
Abuild Users' Manual

For Abuild Version 1.1.6, June 30, 2011

Jay Berkenbilt

Abuild Users' Manual: For Abuild Version 1.1.6, June 30, 2011
Jay Berkenbilt
Copyright © 2007-2011 Jay Berkenbilt, Argon ST

This software and documentation may be distributed under the terms of version 2 of the Artistic License which may be found in the source and
binary distributions. They are provided “as is” without express or implied warranty.

iii

Table of Contents
Notes For Users of Abuild Version 1.0 .. x
How to Read This Manual .. xi
Acknowledgments ... xii
Notes About Documentation Formatting .. xiii
I. Quick Start ... 1

1. Introduction ... 2
1.1. Abuild Overview .. 2
1.2. Typographic Conventions .. 2
1.3. Abuild Version Numbers and Release Policy ... 3

1.3.1. Abuild Version Numbers ... 3
1.3.2. Backward Compatibility Policy .. 3

1.4. Design Features ... 4
2. Building and Installing Abuild .. 7

2.1. System Requirements .. 7
2.2. Building Abuild ... 8
2.3. Installing Abuild .. 8
2.4. Additional Requirements for Windows Environments .. 8
2.5. Version Control Considerations ... 9

3. Basic Operation .. 11
3.1. System Considerations ... 11
3.2. Basic Terminology .. 11
3.3. Compiler Selection .. 12
3.4. Building a C++ Library ... 12
3.5. Building a C++ Program .. 13
3.6. Building a Java Library ... 15
3.7. Building a Java Program .. 16

II. Normal Operation ... 19
4. Build Items and Build Trees ... 20

4.1. Build Items as Objects ... 20
4.2. Build Item Files ... 20
4.3. Build Trees .. 21
4.4. Build Forests ... 21
4.5. Special Types of Build Items .. 21
4.6. Integrating with Third-Party Software ... 22

5. Target Types, Platform Types, and Platforms ... 24
5.1. Platform Structure ... 24
5.2. Object-Code Platforms ... 25
5.3. Output Directories .. 26

6. Build Item Dependencies .. 27
6.1. Direct and Indirect Dependencies .. 27
6.2. Build Order ... 27
6.3. Build Item Name Scoping .. 28
6.4. Simple Build Tree Example .. 30

7. Multiple Build Trees .. 33
7.1. Using Tree Dependencies ... 33
7.2. Top-Level Abuild.conf ... 33
7.3. Tree Dependency Example ... 34

8. Help System ... 37
9. Telling Abuild What to Build .. 38

9.1. Build Targets ... 38
9.2. Build Sets ... 39

Abuild Users' Manual

iv

9.2.1. Example Build Set Invocations ... 40
9.3. Using build-also for Top-level Builds .. 41
9.4. Building Reverse Dependencies ... 42
9.5. Traits .. 42

9.5.1. Declaring Traits ... 43
9.5.2. Specifying Traits at Build Time .. 43
9.5.3. Example Trait Invocations ... 44

9.6. Target Selection ... 44
9.7. Build Set and Trait Examples ... 45

9.7.1. Common Code Area ... 45
9.7.2. Tree Dependency Example: Project Code Area .. 49
9.7.3. Trait Example .. 50
9.7.4. Building Reverse Dependencies .. 54
9.7.5. Derived Project Example ... 54

10. Integration with Automated Test Frameworks ... 57
10.1. Test Targets ... 57
10.2. Integration with QTest ... 57
10.3. Integration with JUnit .. 57
10.4. Integration with Custom Test Frameworks ... 58

11. Backing Areas .. 59
11.1. Setting Up Backing Areas .. 59
11.2. Resolving Build Items to Backing Areas ... 59
11.3. Integrity Checks .. 60
11.4. Task Branch Example .. 62
11.5. Deleted Build Item .. 65

12. Explicit Read-Only and Read/Write Paths .. 68
13. Command-Line Reference ... 70

13.1. Basic Invocation ... 70
13.2. Variable Definitions .. 70
13.3. Informational Options .. 70
13.4. Control Options .. 71
13.5. Output Options ... 73
13.6. Build Options ... 74
13.7. General Targets .. 75

14. Survey of Additional Capabilities ... 76
III. Advanced Functionality .. 78

15. The Abuild.conf File .. 79
15.1. Abuild.conf Syntax .. 79

16. The Abuild.backing File .. 82
17. The Abuild Interface System ... 83

17.1. Abuild Interface Functionality Overview ... 83
17.2. Abuild.interface Syntactic Details .. 86
17.3. Abuild Interface Conditional Functions ... 90
17.4. Abuild.interface and Target Types .. 90
17.5. Predefined Abuild.interface Variables ... 91

17.5.1. Interface Variables Available to All Items ... 91
17.5.2. Interface Variables for Object-Code Items ... 91
17.5.3. Interface Variables for Java Items .. 93

17.6. Debugging Interface Issues ... 94
18. The GNU Make backend .. 95

18.1. General Abuild.mk Syntax .. 95
18.2. Make Rules .. 95

18.2.1. C and C++: ccxx Rules .. 95
18.2.2. Options for the msvc Compiler .. 98

Abuild Users' Manual

v

18.2.3. Autoconf: autoconf Rules ... 98
18.2.4. Do Nothing: empty Rules ... 98

18.3. Autoconf Example .. 99
19. The Groovy Backend .. 103

19.1. A Crash Course in Groovy .. 103
19.2. The Abuild.groovy File ... 106

19.2.1. Parameter Blocks .. 106
19.2.2. Selecting Rules ... 107

19.3. Directory Structure for Java Builds ... 107
19.4. Class Paths and Class Path Variables .. 108
19.5. Basic Java Rules Functionality ... 109

19.5.1. Compiling Java Source Code .. 110
19.5.2. Building Basic Jar Files ... 110
19.5.3. Wrapper Scripts .. 111
19.5.4. Testing with JUnit ... 111
19.5.5. JAR Signing .. 111
19.5.6. WAR Files .. 112
19.5.7. High Level Archives ... 112
19.5.8. EAR Files .. 112

19.6. Advanced Customization of Java Rules ... 112
19.7. The Abuild Groovy Environment ... 113

19.7.1. The Binding ... 113
19.7.2. The Ant Project .. 113
19.7.3. Parameters, Interface Variables, and Definitions ... 114

19.8. Using QTest With the Groovy Backend ... 114
19.9. Groovy Rules ... 115
19.10. Additional Information for Rule Authors .. 115

19.10.1. Interface to the abuild Object ... 115
19.10.2. Using org.abuild.groovy.Util ... 118

20. Controlling and Processing Abuild's Output .. 119
20.1. Introduction and Terminology .. 119
20.2. Output Modes ... 119
20.3. Output Prefixes ... 120
20.4. Parsing Output .. 120
20.5. Caveats and Subtleties of Output Capture .. 122

21. Shared Libraries .. 123
21.1. Building Shared Libraries ... 123
21.2. Shared Library Example ... 124

22. Build Item Rules and Automatically Generated Code ... 129
22.1. Build Item Rules ... 129
22.2. Code Generator Example for Make ... 130
22.3. Code Generator Example for Groovy .. 132
22.4. Multiple Wrapper Scripts .. 140
22.5. Dependency on a Make Variable .. 142
22.6. Caching Generated Files ... 145

22.6.1. Caching Generated Files Example .. 146
23. Interface Flags ... 150

23.1. Interface Flags Conceptual Overview .. 150
23.2. Using Interface Flags ... 151
23.3. Private Interface Example ... 152

24. Cross-Platform Support ... 155
24.1. Platform Selection ... 155
24.2. Dependencies and Platform Compatibility .. 157

Abuild Users' Manual

vi

24.3. Explicit Cross-Platform Dependencies ... 158
24.3.1. Interface Errors ... 158

24.4. Dependencies and Pass-through Build Items ... 159
24.5. Cross-Platform Dependency Example .. 161

25. Build Item Visibility .. 166
25.1. Increasing a Build Item's Visibility ... 166
25.2. Mixed Classification Example ... 168

26. Linking With Whole Libraries .. 176
26.1. Whole Library Example .. 176

27. Opaque Wrappers .. 179
27.1. Opaque Wrapper Example .. 179

28. Optional Dependencies ... 181
28.1. Using Optional Dependencies .. 181
28.2. Optional Dependencies Example .. 181

29. Enhancing Abuild with Plugins .. 185
29.1. Plugin Functionality ... 185
29.2. Global Plugins .. 186
29.3. Adding Platform Types and Platforms ... 186

29.3.1. Adding Platform Types .. 187
29.3.2. Adding Platforms .. 187

29.4. Adding Toolchains .. 188
29.5. Plugin Examples ... 190

29.5.1. Plugins with Rules and Interfaces .. 190
29.5.2. Adding Backend Code ... 192
29.5.3. Platforms and Platform Type Plugins .. 194
29.5.4. Plugins and Tree Dependencies ... 198
29.5.5. Native Compiler Plugins .. 198
29.5.6. Checking Project-Specific Rules .. 201
29.5.7. Install Target .. 204

30. Best Practices .. 205
30.1. Guidelines for Extension Authors ... 205
30.2. Guidelines for Make Rule Authors ... 205
30.3. Guidelines for Groovy Target Authors .. 206
30.4. Platform-Dependent Files in Non-object-code Build Items .. 207
30.5. Hidden Dependencies ... 207
30.6. Interfaces and Implementations .. 208

31. Monitored Mode .. 212
32. Sample XSL-T Scripts .. 214
33. Abuild Internals ... 215

33.1. Avoiding Recursive Make ... 215
33.2. Starting Abuild in an Output Directory .. 215
33.3. Traversal Details ... 216
33.4. Compatibility Framework ... 216
33.5. Construction of the Build Set .. 217
33.6. Construction of the Build Graph .. 218

33.6.1. Validation .. 218
33.6.2. Construction ... 218
33.6.3. Implications ... 219

33.7. Implementation of the Abuild Interface System ... 220
33.8. Loading Abuild Interfaces ... 222
33.9. Parameter Block Implementation .. 222

IV. Appendices ... 223
A. Release Notes .. 225
B. Major Changes from Version 1.0 to Version 1.1 ... 257

Abuild Users' Manual

vii

B.1. Non-compatible Changes ... 257
B.2. Deprecated Features .. 258
B.3. Small, Localized Changes .. 259
B.4. Groovy-based Backend for Java Builds .. 261
B.5. Redesigned Build Tree Structure ... 261

C. Upgrading from 1.0 to Version 1.1 .. 263
C.1. Upgrade Strategy .. 263
C.2. Potential Upgrade Problems: Things to Watch Out For .. 264
C.3. Upgrade Procedures .. 265

C.3.1. High-level Summary of Upgrade Process .. 265
C.3.2. Editing abuild.upgrade-data ... 267

D. Known Limitations ... 269
E. Online Help Files .. 270

E.1. abuild --help groovy .. 270
E.2. abuild --help helpfiles .. 271
E.3. abuild --help make .. 271
E.4. abuild --help usage .. 272
E.5. abuild --help vars .. 275
E.6. abuild --help rules rule:empty .. 276
E.7. abuild --help rules rule:groovy ... 277
E.8. abuild --help rules rule:java ... 277
E.9. abuild --help rules rule:autoconf ... 289
E.10. abuild --help rules rule:ccxx ... 290
E.11. abuild --help rules toolchain:gcc .. 293
E.12. abuild --help rules toolchain:mingw ... 293
E.13. abuild --help rules toolchain:msvc ... 294
E.14. abuild --help rules toolchain:unix_compiler .. 295

F. --dump-data Format .. 296
G. --dump-interfaces Format .. 303
H. --dump-build-graph Format .. 305
I. The ccxx.mk File .. 306
J. The java.groovy and groovy.groovy Files ... 316
K. The Deprecated XML-based Ant Backend ... 331

K.1. The Abuild-ant.properties File .. 331
K.2. Directory Structure For Java Builds ... 333
K.3. Ant Hooks .. 334
K.4. JAR-like Archives .. 335
K.5. WAR Files .. 335
K.6. EAR Files ... 336

L. List of Examples ... 337
Index .. 338

viii

List of Figures
6.1. Build Item Scopes .. 29
7.1. Top-Level Abuild.conf ... 34
7.2. Build Trees in general/reference ... 36
11.1. Shadowed Dependency .. 61
11.2. Build Trees in general/task ... 63
11.3. Build Trees in general/user .. 66
23.1. Private Interface Flag ... 152
24.1. Multiplatform Pass-through Build Item .. 160
25.1. Build Item Visibility .. 167
30.1. Hidden Circular Dependency ... 209
30.2. Shared Include Directory .. 210
30.3. Separate Include Directories .. 211

ix

List of Tables
5.1. Built-in Platforms, Platform Types, and Target Types ... 25
19.1. Default Java Directory Structure .. 108

x

Notes For Users of Abuild Version 1.0
This manual is written for abuild version 1.1. If you are a user of abuild version 1.0 and are just looking for a summary
of what changed, please see Appendix B, Major Changes from Version 1.0 to Version 1.1, page 257. The material
there includes a summary of a change along with cross references to relevant sections of documentation.

Please note that, with a small handful of exceptions, abuild version 1.1 is be able to build software that used abuild
1.0 with few if any modifications. The section on changes in version 1.1 (Appendix B, Major Changes from Version
1.0 to Version 1.1, page 257) includes a detailed list of things to watch out for during upgrading and when running
in 1.0-compatibility mode.

xi

How to Read This Manual
Welcome to the abuild manual! You may always find the latest copy of this manual on abuild's website [http://
www.abuild.org]. This manual is designed to get you up and running with abuild quickly: the most essential and com-
mon topics are presented first so that you can just start at the beginning and stop reading when you feel that you've seen
enough to get going. Then, when you are ready, you can come back for documentation on the full depth of abuild's
functionality. If you come across something in the first reading that you don't understand, it's probably safe to skip it
and come back when you're more comfortable. As each new concept is presented, it is enhanced with examples. A list
of all the examples in the document can be found in Appendix L, List of Examples, page 337. If you are just looking
for changes from previous versions of abuild, please see Appendix A, Release Notes, page 225 and Appendix B,
Major Changes from Version 1.0 to Version 1.1, page 257.

This manual is divided into four parts. Each part of the document draws on material introduced in the earlier parts.
Although earlier parts of the documentation are intended to be understandable without the material from the later parts,
they contain forward cross references where appropriate.

In Part I, “Quick Start”, page 1, we cover basic information that should help you come up to speed on using abuild
for day-to-day work. It is geared toward people who are working on an existing software baseline that uses abuild. In
Part I, you will learn about what abuild is and the types of problems it was designed to solve, be introduced to some
basic terminology, and see a few examples of how to perform some simple build operations. This part of the manual
is very short and is designed to be readable in one sitting. Casual users of abuild may have no need to read past Part I.

In Part II, “Normal Operation”, page 19, we introduce the most common features of abuild. All the basic features
are covered, and a few advanced features are covered. All the information you need for simple projects has been
presented by the end of Part II.

In Part III, “Advanced Functionality”, page 78, we introduce advanced topics. By the end of Part III, you will
have been exposed to every feature of abuild.

Part IV, “Appendices”, page 223 consists of a small handful of appendices.

For those wishing to go still deeper, the abuild source code is heavily commented, and the software comes with a
thorough automated test suite that covers every feature of the software and many error conditions as well.

http://www.abuild.org
http://www.abuild.org
http://www.abuild.org

xii

Acknowledgments
The creation of abuild would not have been possible without the enthusiastic support of my employer, Argon ST
[http://www.argonst.com]. Argon not only recognized the important role of a strong build tool in contributing to the
overall quality and reliability of its software, but saw the value of releasing it to the open source community in hopes
of making an even broader contribution.

There are many people within Argon who helped take abuild to where it is now, but among these, a handful of people
deserve special mention:

• Brian Reid, who first introduced me to Groovy, the language that is at the heart of abuild version 1.1's significantly
improved Java support, and who kept the momentum going for making abuild's Groovy-based Java framework a
reality

• Brian Reid, Joe Schettino, Kathleen Friesen, and Brandon Barlow who met with me many times to help hammer
out and test early versions of the Groovy-based Java framework

• Brandon Barlow for tirelessly testing numerous builds with abuild 1.1 during its alpha period.

• Cass Dalton, who has frequently served as a sounding board as I think about new abuild capabilities, and who has
played a significant role in helping to ensure that abuild is as stable and widely usable as possible

• Chris Costa, who served as a sounding board and contributed numerous ideas throughout the entire development
process of abuild, including conducting a thorough review of the abuild 1.0 documentation

• Andrew Hayden, who spent many hours reviewing and critiquing the entire manual prior to the release of version
1.0 and who contributed many feature ideas designed to ease implementation of an abuild Eclipse plugin

• Joe Davidson, the first abuild evangelist who has been invaluable in getting abuild to become as widely accepted
within Argon ST as it is

• Gavin Mulligan, who has consistently taken the time to report any problem, no matter how small, and who probably
reported more issues than everyone else combined during abuild's pre-1.0 alpha period

• Bob Tamaru, who in addition to being a mentor and supporter for most of my career, provided considerable assis-
tance to me as I presented the case to Argon ST to allow me to release abuild as an open source project

http://www.argonst.com
http://www.argonst.com

xiii

Notes About Documentation
Formatting
This manual is written in docbook. The PDF version of the manual was generated with Apache fop, which as of this
writing, is still incomplete. There are a few known issues with the PDF version of the documentation. Hopefully these
issues will all be addressed as fop matures.

• There are many bad line breaks. Sometimes words are incorrectly hyphenated, and line breaks also occur between
two dashes in command line options and even between the two + characters of “C++”.

• In many of the example listings, there are lines that would be longer than the shaded boxes in the PDF output. We
wrap those lines and place a backslash (\) character just before and after the extra line breaks. This is done for both
the HTML and the PDF output even though the long lines are only a problem for the PDF output.

• Some paragraphs appear to have extra indentation. This is because the formatting software generates a hard space
whenever we have an index term marker in the text.

• There are no bookmarks. It would be good if we could create bookmarks to the chapter headings, but as of this
writing, the documented procedure for doing this does not appear to work.

Part I. Quick Start
The material contained in this part is geared toward new and casual users of abuild. Without going into excessive
detail, this part gives you a quick tour of abuild's functionality and presents a few examples of routine build operations.
By the end of this part, you should be able to use abuild for simple build operations, and you should have begun to
get a feel for the basic configuration files.

2

Chapter 1. Introduction
1.1. Abuild Overview
Abuild is a system designed to build large software projects or related families of software projects that are divided
into a potentially large number of components. It is specifically designed for software projects that are continually
evolving and that may span multiple languages and platforms. The basic idea behind abuild is simple: when building a
single component (module, unit, etc.) of a software package, the developer should be able to focus on that component
exclusively. Abuild requires each component developer to declare, by name, the list of other components on which
his or her component depends. It is then abuild's responsibility to provide whatever is needed to the build environment
to make other required items visible.

You might want to think of abuild as an object-oriented build system. When working with abuild, the fundamental unit
is the build item. A build item is essentially a single collection of code, usually contained within one directory, that is
built as a unit. A build item may produce one or more products (libraries, executables, JAR files, etc.) that other build
items may want to use. It is the responsibility of each build item to provide information about its products that may
be used by other items that depend on it. This information is provided by a build item in its abuild interface. In this
way, knowledge about how to use a build item is encapsulated within that build item rather than being spread around
throughout the other components of a system.

To implement this core functionality, abuild provides its own system for managing build items as well as the dependen-
cies and relationships among them. It also provides various build rules implemented with underlying tools, specifically
GNU Make and Apache Ant accessed using the Groovy programming language, to perform the actual build steps. We
refer to these underlying tools as backends. Although the bulk of the functionality and sophistication of abuild comes
from its own core capabilities rather than the build rules, the rules have rich functionality as well. Abuild is intended
to be your build system. It is not intended, as some other tools are, to wrap around your existing build system. 1

Support for compilation in multiple programming languages and on multiple platforms, including embedded platforms,
is central to abuild's design. Abuild is designed to allow build items to be built on multiple platforms simultaneously.
An important way in which abuild achieves this functionality is to do all of its work inside of an output directory.
When abuild performs the actual build, it always creates an output directory named abuild-platform. When abuild
invokes make, it does so in that directory. By actually invoking the backend in the output directory, abuild avoids
the situation of temporary files conflicting with each other on multiple simultaneous builds of a given build item on
multiple platforms. For ant-based builds (using either the supported Groovy backend or the deprecated xml-based
ant backend), each build is given a private ant Project object whose basedir is set to the output directory. Abuild
is designed to never create or remove any output files outside of its output directories. This enables abuild's cleanup
operation to simply remove all output directories created by any instance of abuild, and also reduces the likelihood of
unintentionally mixing generated products with version-controlled sources.

1.2. Typographic Conventions
The following list shows the font conventions used throughout this document for the names of different kinds of items.

literal text
replaceable text
build items and build item scope names
Abuild.conf keys, flags, and traits
Abuild.interface variables, java properties, and make variables
Abuild.interface keywords
commands and build targets

1 Abuild can, however, interoperate with other build systems as needed, which may be useful while transitioning a software development effort
to using abuild.

Introduction

3

command line options and build sets
environment variables
file names and make/Groovy rule sets
platforms, platform types, and target types

1.3. Abuild Version Numbers and Release Poli-
cy
This section describes what you can expect in terms of abuild version numbers and non-compatible changes.

1.3.1. Abuild Version Numbers
Each abuild release is assigned a version number. For abuild releases, we use the following version numbering con-
vention:

major.minor.prerelease-or-update

The major field of the version number indicates the major version number. It changes whenever a major release
is made. A new major release of abuild represents a wholesale change in the way abuild works. Major release are
expected to be very infrequent.

The minor field of the version number indicates the minor version number. It changes whenever a minor release is
made. A minor release is an incremental release that may introduce significant new features, fix bugs, or change the
way some things work, but it will not fundamentally shift the way abuild works. We impose tight restrictions on the
introduction of non-backward-compatible changes in minor releases as discussed below.

The prerelease-or-update field can indicate either a prerelease version or an update release of a specific minor
version. A prerelease is an alpha or beta release or a release candidate that precedes a regular release. An update
release may contain bug fixes or new features as long as no non-compatible changes are made to existing functionality.
Allowing new non-breaking features to be introduced in an update release makes it possible to add features to abuild
incrementally while still guaranteeing as much compatibility as possible. There is no support for a prerelease of an
update to a specific minor version (like 1.1.1.b1).

Before a regular major or minor release, there may be a series of alpha releases, beta releases, and release candidates.
In those cases, the prerelease-or-update field of the version number is either “a”, “b”, or “rc” followed by a
number. The prerelease version numbers clearly indicate which regular release the prerelease applies to. For example,
version 1.3.a4 would be the fourth alpha release preceding the release of version 1.3.0.

After any major or minor release, it is possible that a small problem may be corrected in a bug-fix release. In such
a release, the prerelease-or-update field contains a number that indicates which bug-fix release this is. For
example, version 1.2.1 would be a bug-fix release to version 1.2.0.

Historical note: the first release of abuild 1.0 was just version 1.0, not version 1.0.0. The use of “x.y.0” was introduced
with version 1.1.0 so that “abuild x.y” could unambiguously refer to all update releases of minor version x.y rather
than just the first.

1.3.2. Backward Compatibility Policy
In a new major release of abuild (e.g., version 2.0.0), there is no promise that changes will be backward compatible,
nor is there any expectation that configuration files from older abuild releases will work with the new version. When
possible, care will be taken to mitigate any inconvenience such as providing upgrade scripts.

In each new minor release of abuild, there may be new features and backward-compatible changes. In minor releas-
es, we adopt a stricter policy regarding non-backward-compatible changes. Specifically, non-backward-compatible

Introduction

4

changes may be introduced only if the changed construct generated a deprecation warning in the previous minor re-
lease. In other words, if particular construct in version 1.3 is going to be dropped or changed in a non-compatible
way, the change can't be made until version 1.5. In version 1.4, the new way may work, but use of the deprecated
construct must still work and must generate a warning. The old way can be dropped entirely in version 1.5 once users
have had a chance to adjust their configuration files. In that way, users who take every minor release upgrade can
be guaranteed that they will not experience surprise non-compatible changes, and they will not have to update their
configuration files at the same time that they upgrade abuild.

With alpha releases, there is no commitment to avoiding non-compatible changes. In particular, a feature that was
introduced into abuild during an alpha testing period may be modified in non-compatible ways or dropped entirely
during the course of alpha testing. During beta testing, every effort will be made to avoid non-compatible changes,
but they are still allowed. No non-compatible changes will be made from the first release candidate through the next
minor release.

Specific exceptions may be made to any of the above rules, but any such exceptions will be clearly stated in the release
notes or the documentation. It may happen, for example, that a particular new feature is still in development when a
release is made. In that case, the release notes may declare that feature to still be alpha, in which case non-compatible
changes can be introduced in the next release.

We'll clarify with some concrete examples. Suppose a new feature is planned for version 1.4 of abuild. It would be
okay if the first implementation of that feature appeared in version 1.4.a2 and if the feature were changed in a non-
compatible way in 1.4.a6. However, after version 1.4.0 was released, the next non-compatible change would not
be permitted until version 1.5.a1, and even then, the feature as it worked in version 1.4.0 would still have to
work, though a deprecation warning would be issued. The old version 1.4.x way of doing things could stop working
altogether in version 1.6.a1. It is also okay to add a new feature within a minor release. For example, it's okay if
1.0.3 adds some feature that wasn't there in 1.0.2 as long as everything that worked in 1.0.2 works the same way
in 1.0.3. In other words, although everything that worked in 1.0.2 must work in 1.0.3 , there's no expectation
that everything that works in 1.0.3 must have worked in 1.0.2.

1.4. Design Features
This section describes many of the principles upon which abuild was designed. Understanding this material is not
critical to being able to use abuild just to do simple compiles, but knowing these things will help you use abuild better
and will provide a context for understanding what it does.

Build Integrity
Abuild puts the integrity of the build over all other concerns. Abuild includes several rigorously enforced integrity
checks throughout its implementation in order to prevent many of the most common causes of build integrity
problems.

Strict Dependency Management
Build items must explicitly declare dependencies on other build items. These dependencies are declared by name,
not by path. The same mechanism within abuild that is used to declare a dependency is also used to provide
visibility to the dependent build item. (A build item reads the interfaces of only those build items on which it
directly or indirectly depends.) In this way, it is impossible to accidentally become dependent on something by
unwittingly using files that it provides. Abuild guarantees that there are no circular dependencies among build
items and also provides a fundamental guarantee that all build items in a dependency chain resolve names to paths
in a consistent way within the dependency tree.

Directory Structure Neutrality
Build items refer to each other only by name and never by path. Abuild resolves build item names to paths inter-
nally and provides path information at runtime as needed. This makes any specific abuild installation agnostic
about directory structure and makes it possible to move things around without changing any build rules. In this
way, abuild stays out of the way when it's time to reorganize your project.

Introduction

5

Focus on One Item at a Time
When using abuild, you are generally able to focus on building just the item you are working on without having to
worry about the details of the items it depends on. Abuild does all the work of figuring out what your environment
has to look like to give you access to your dependencies. It can then start a local build from anywhere and pass
the right information to that local build. This is achieved through encapsulation of knowledge about a build item's
products inside the build item itself and making that knowledge available to its users through an abuild-specific
interface.

Environment Independence
Abuild does not require you to have any project-specific or source tree-specific environment variables set, be
using any particular shell or operating system, or have the abuild software itself installed in any particular location.
Abuild is designed so that having the abuild command in your path is sufficient for doing a build. This keeps
abuild independent from any specific source tree or project. Abuild can be used to build a single-source-file, stand-
alone program or an elaborate product line consisting of hundreds or thousands of components. It can be also
used for multiple projects on the same system at the same time. No special path settings or environment variable
settings are required to use abuild, other than ensuring that the external tools that your build requires (GNU Make,
compilers, etc.) are available and in your path.

Support for Parallel and Distributed Builds
When building multiple items, abuild creates a build set consisting of all the items to be built. It computes the
directories in which it needs to build and invokes the build iteratively in those directories. Abuild automatically
figures out what can be built in parallel and what the build order should be by inspecting the dependency graph.
Abuild avoids many of the pitfalls that get in the way of parallel and distributed operation including recursive
execution, shell-based loops for iteration, file system-based traversal, and writing files to the source directory.

Support for Multiple Platforms
Abuild was designed to work on multiple platforms. It includes a structure for referring to platforms and for
encapsulating platform-specific knowledge. This makes it easier to create portable build structures for portable
code.

Efficiency
Abuild aims to be as efficient as possible without compromising build integrity. Abuild calculates as much as
possible up front when it is first invoked, and it passes that information to backend build programs through auto-
matically-generated files created inside its own output directories. By computing the information one time, abuild
significantly reduces the degree to which its backend build programs' rules have to use external helper applications
to compute information they need. Abuild's configuration files and build tree traversal steps are designed in such
a way that abuild never has to perform unbounded searches of a build tree. This enables startup to be fast even
on build trees containing thousands of build items.

Encapsulation
Build items encapsulate knowledge about what is required by their users in order to make use of them at build
time. The user may also create build items with restricted scope, thus allowing private things to be kept private.
This makes it possible to refactor or reorganize individual components of a system without affecting the build
files of other build items that depend on them.

Declarative Build Files
The majority of build item configuration files are declarative: they contain descriptions of what needs to be done,
rather than information about how to do it. Most end user configuration files contain nothing but variable settings
or key/value pairs and are independent of the platform or compiler used to build the item. For those cases in which
a declarative system is insufficient to express what needs to do be done, abuild provides several mechanisms for
specific steps to be defined and made available to the items that need them.

Support for Multiple Backends
The parts of abuild that manage dependencies and build integrity are distinct from the parts of abuild that actually
perform builds. Abuild current uses either GNU Make or Apache Ant, accessed through a Groovy language front

Introduction

6

end, to perform builds. 2 The internal integration between abuild and its backend build programs is fairly loose,
and adding additional backends requires relatively minor and localized code changes. In addition, abuild requires
only the backends that a particular build tree uses to be present on your system when you are performing a build.
That is, if you are building only Java code, you don't need GNU Make, and if you're building only C and C++
code, you don't need a Java or ant environment.

2 There is also support for ant using xml files. This was the primary mechanism for using ant in abuild 1.0, but it is deprecated in version 1.1 in favor of
the much more flexible and capable Groovy-based backend. Throughout this document, we refer to it as the “deprecated xml-based ant” framework.

7

Chapter 2. Building and Installing
Abuild
2.1. System Requirements
You may always find the latest version of abuild by following the links on abuild's website [http://www.abuild.org].
To use abuild, the following items must be available on your system:

• GNU Make [http://www.gnu.org/software/make/] version 3.81 or higher is required if you are building any build
items that use GNU Make as a backend. This would include platform-independent code and C/C++ code, but not
Java code.

• A Java 5 or newer Java SDK is required if you are going to use abuild to build Java code. Abuild is known to work
with OpenJDK 1.6.

• Apache Ant [http://ant.apache.org/] version 1.7.0 or newer is required if you are building any Java code. If you are us-
ing abuild's deprecated xml-based ant framework, then you also need ant-contrib [http://ant-contrib.sourceforge.net/
] version 1.0.b3 or later installed in either ant's or abuild's lib directory.

• Perl [http://www.perl.com/] version 5.8 or newer is required if you are performing any GNU Make-based builds.

• Perl version 5.8 or newer and qtest [http://qtest.qbilt.org/] version 1.0 or newer are required if you are using the qtest
automated test framework. Abuild's own test suite uses qtest. Note also that qtest requires GNU diffutils [http://
www.gnu.org/software/diffutils]. Any version should do.

• In order to use abuild's autoconf support, you need autoconf [http://www.gnu.org/software/autoconf] version 2.59 or
newer, automake [http://www.gnu.org/software/automake] version 1.9 or newer. These are also required for abuild's
test suite to pass since the test suite exercises its autoconf support.

• If you are planning on building any GNU Make-based build items on Windows, Cygwin [http://www.cygwin.com/]
is required. For a Java-only abuild installation on Windows, Cygwin and Perl are not required. It is hoped that a
future version of abuild will not require Cygwin. For details on using Cygwin with abuild, please see Section 2.4,
“Additional Requirements for Windows Environments”, page 8.

To build abuild, you must also have version 1.35 or newer of boost [http://www.boost.org/]. Abuild uses several boost
libraries, including regex, thread, system, filesystem, and date_time as well as several header-only libraries such as
asio, bind, and function. Abuild is known to buildable by gcc and Microsoft Visual C++ (7.1 or newer), but it should
be buildable by any compiler that supports boost 1.35. In order for shared library support to work properly with gcc,
gcc must be configured to use the GNU linker. 1 Abuild itself contains C++ code and Java code, so all the runtime
requirements for both systems are required to build abuild.

In order to build abuild's Java code, which is required if you are doing any Java-based builds, you must have at least
version 1.5.7 of Groovy [http://groovy.codehaus.org]. It is recommended that you have at least version 1.6.0. It is not
required that you have Groovy to run abuild because abuild includes an embedded version of the Groovy environment,
but a full installation of Groovy is required in order to do the initial bootstrapping build of abuild's Java code. 2

As of abuild version 1.1.0, abuild is known to work with Groovy versions 1.6.7 and 1.7-RC-1, which were the latest
available versions at the time of the release. Upgrading abuild's embedded version of Groovy is as simple as just
replacing the embeddable Groovy JAR file inside of abuild's lib directory. Just delete the old one and copy the new

1 The only reason for the GNU linker requirement is that abuild currently knows about -fPIC. It would be better to have a more robust way of
configuring flags for position-independent-code, but it's not clear how to do this without replicating all the knowledge built into libtool or having
some autoconf-like method of configuring abuild at runtime.
2 Besides, every Java programmer should have a copy of Groovy installed!

http://www.abuild.org
http://www.abuild.org
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/
http://ant.apache.org/
http://ant.apache.org/
http://ant-contrib.sourceforge.net/
http://ant-contrib.sourceforge.net/
http://www.perl.com/
http://www.perl.com/
http://qtest.qbilt.org/
http://qtest.qbilt.org/
http://www.gnu.org/software/diffutils
http://www.gnu.org/software/diffutils
http://www.gnu.org/software/diffutils
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf
http://www.gnu.org/software/automake
http://www.gnu.org/software/automake
http://www.cygwin.com/
http://www.cygwin.com/
http://www.boost.org/
http://www.boost.org/
http://groovy.codehaus.org
http://groovy.codehaus.org

Building and Installing Abuild

8

one in. abuild will automatically find it even though its name will have changed to include the later version number.
Ideally, you should also rebuild abuild's java support from source and rerun abuild's test suite just to be sure abuild
still works properly with the latest Groovy.

Since abuild determines where it is being run from when it is invoked, a binary distribution of abuild is not tied
to a particular installation path. It finds the root of its installation directory by walking up the path from the abuild
executable until it finds a directory that contains make/abuild.mk. This makes it easy to have multiple versions of
abuild installed simultaneously, and it also makes it easy to create relocatable binary distributions of abuild.

Abuild itself does not require any environment variables to be set, but ant and/or the Java development environment
may. If you have the JAVA_HOME and ANT_HOME environment variables set, abuild will honor them when selecting
which copy of java to run and where to find the ant JAR files. Otherwise, it will run java and ant from your path to make
those determinations. Although abuild is explicitly tested to work without either ANT_HOME or JAVA_HOME set, if
any Java builds are being done, abuild will start up a little more quickly if they are set. As many other applications
expect these to be set, it is recommended that you set JAVA_HOME and ANT_HOME. When abuild invokes Java for
any of the Java-based backends, it will automatically add all the JAR files in $ANT_HOME/lib to the classpath as
well as all JAR files in abuild's own lib directory. Abuild includes a copy of Groovy's embeddable JAR in its own lib
directory. You can copy additional JAR files into lib as well, but if you do so, just remember that those JAR files will
not automatically be available to users whose abuild installations do not include them.

As you begin using abuild, you may find yourself generating a collection of useful utility build items for things like spe-
cific third-party libraries, external compilers, documentation generators, or test frameworks. There is a small collection
of contributed build items in the abuild-contrib package, which is available at abuild's web site [http://www.abuild.org].
These may have additional requirements. For details, please see the information about abuild-contrib on the website.

2.2. Building Abuild
Abuild is self-hosting: it can be built with itself, or for bootstrapping, it can be built with a GNU Makefile that uses
abuild's internal GNU Make support. To build abuild's Java code, you also need Groovy, Apache Ant and a Java
development environment. Please see the file src/README.build in the source distribution for instructions on building
abuild.

2.3. Installing Abuild
If you are creating a binary distribution or installing from source, please see the file src/README.build in the source
directory. If you are installing from a pre-built binary distribution, simply extract the binary distribution in any directo-
ry. Abuild imposes no requirements on where the directory should be or what it should be called as long as its contents
remain in the correct relative locations. You may make a symbolic link to the actual bin/abuild executable from a di-
rectory in your path. Abuild will follow this link when attempting to discover the path of its installation directory. You
may also add the abuild distribution's bin directory to your path, or invoke abuild by the full path to its executable. 3

2.4. Additional Requirements for Windows En-
vironments

To build abuild and use it in a Windows environment for make-based builds, certain pieces of the Cygwin [http://
www.cygwin.com/] environment are required. 4 Note that abuild is able to build with and be built by Visual C++ on

3 If abuild is not invoked as an absolute path, it will iterate through the directories in your PATH trying to find itself. Therefore, abuild may fail
to work properly if you invoke it programmatically, pass \“abuild” to it as argv[0], and do not have the copy of abuild you are invoking in
your path before any other copy of abuild. This limitation should never impact users who are invoking abuild normally from the command line or
through a shell or other program that searches the path.
4 This may cease to be true in a future version of abuild.

http://www.abuild.org
http://www.abuild.org
http://www.cygwin.com/
http://www.cygwin.com/
http://www.cygwin.com/

Building and Installing Abuild

9

Windows. It uses Cygwin only for its development tools. Cygwin is not required to run executables built by abuild
in a Windows environment, including abuild itself. However, Cygwin is required to supply make and perl to abuild.
The following parts of Cygwin are required:

Devel

autoconf
automake
make

System

rebase

Util

diffutils

Perl is required, but appears to be installed by default in recent Cygwin installations.

Note that rebaseall (from the rebase package) may need to be run in order for fork to work from perl with certain
modules. (Although abuild itself doesn't call fork from perl, qtest, which is used for abuild's test suite, does.)

Other modules may also be desirable. In particular, libxml2 from the Text section is required in order to run certain
parts of abuild's test suite, though the test suite will just issue a warning and skip those tests without failing if it can't
find xmllint.

If you intend to use autoconf from Windows and you have Rational Rose installed, you may need to create /usr/bin/
hostinfo (inside of the Cygwin environment) as

#!/bin/false

so that ./configure's running of hostinfo doesn't run hostinfo from Rational Rose.

In order to use Visual C++ with abuild, you must have your environment set up to invoke Visual C++ command line
tools. This can be achieved by running the shortcut supplied with Visual Studio, or you can create a batch file on your
own. The following batch file would enable you to run abuild from a Cygwin environment with the environment set
up for running Visual C++ from Visual Studio 7.1 (.NET 2003):

@echo off
call "%VS71COMNTOOLS%"\vsvars32.bat
C:\cygwin\cygwin.bat

Adjust as needed if your Cygwin is installed other than in C:\cygwin or you have a different version of Visual C+
+ installed.

In order to use qtest with abuild under Windows, the Cygwin version of Perl must be the first perl in your path.

2.5. Version Control Considerations
Abuild creates output directories in the source directory, and all generated files are created inside of these abuild-
generated directories. All output directories are named abuild-*. It is recommended that you configure hooks or triggers
in your version control system to prevent these directories or their contents from being accidentally checked in. It may
also be useful to prevent Abuild.backing from being checked in since this file always contains information about the

Building and Installing Abuild

10

local configuration rather than something that would be CM controlled. If it is your policy to allow these to be checked
in, they should be prevented from appearing in shared areas such as the trunk. 5

5 Note, however, that the abuild test suite contains Abuild.backing files, so any CM system that contains abuild must have an exception for abuild
itself. It's conceivable that other tools could also have reasons to have checked in Abuild.backing files in test suites or as templates.

11

Chapter 3. Basic Operation
In this chapter, we will describe the basics of running abuild on a few simple build items, and we will describe how
those build items are constructed. We will gloss over many details that will be covered later in the documentation. The
goal of this chapter is to give you enough information to work on simple build items that belong to existing build trees.
Definitions of build item and build tree appear below. More detailed information on them can be found in Chapter 4,
Build Items and Build Trees, page 20. The examples we refer to in this chapter can be found in doc/example/basic
in your abuild source or binary distribution.

3.1. System Considerations
Abuild imposes few system-based restrictions on how you set it up and use it, but here are a few important things
to keep in mind:

• Avoid putting spaces in path names wherever possible. Although abuild tries to behave properly with respect to
spaces in path names and is known to handle many cases correctly, make is notoriously bad at it. If you try to use
spaces in path names, it is very likely that you will eventually run into problems as they generally cause trouble
in a command-line environment.

• Be careful about the lengths of path names. Although abuild itself imposes no limits on this, you may run up against
operating system limits if your paths are too long. In particular, Windows has a maximum path name length of 260
characters. If you have a build tree whose root already has a long path and you then have Java classes that are buried
deep within a package-based directory structure, you can bump into the 260-character limit faster than you'd think.
On Windows, it is recommended that you keep your build tree roots as close to the root of the drive as possible. On
any modern UNIX system, you should not run into any path name length issues.

3.2. Basic Terminology
Here are a few basic terms you'll need to get started:

build item
 A build item is the most basic item that is built by abuild. It usually consists of a directory that contains files
that are built. Any directory that contains an Abuild.conf file is a build item. We refer to the build item whose
Abuild.conf resides in the current directory as the current build item.

build tree
 A build tree is a collection of build items arranged hierarchically in the file system. All build items in a build
tree may refer to each other by name. Each build item knows the locations of its children within the file system
hierarchy and the names of the build items on which it depends.

build forest
 A build forest is a collection of build trees. If there are multiple build trees in a forest, there may be one-way
visibility relationships among the trees, which are declared similarly to dependency relationships among build
items. We will return to this concept later in the documentation.

target
 A target is some specific product to be built. The term “target” means exactly the same thing with abuild as it does
with other build systems such as make or ant. In fact, with the exception of a small handful of “special” targets,
abuild simply passes any targets given to it onto the backend build system for processing. The most common
targets are all and clean. For a more complete discussion of targets, see Section 9.1, “Build Targets”, page 38.
Be careful not to confuse target with target type, defined in Section 5.1, “Platform Structure”, page 24.

For a more complete description of build items, build trees, and build forests, please see Chapter 4, Build Items and
Build Trees, page 20.

Basic Operation

12

3.3. Compiler Selection
Full details on compiler support and compiler selection are covered in Section 24.1, “Platform Selection”, page 155.
To get started, on Linux systems, abuild will build with gcc by default. On Windows, if you run abuild from a shell
that is appropriately set up to run Microsoft Visual C++ (as by following the command prompt shortcut provided as
part of your Visual C++ implementation), abuild will automatically use Visual C++. If you have cygwin installed with
gcc and the mingw runtime environment, abuild will attempt to use gcc -mno-cygwin to build as long as you set the
MINGW environment variable to 1, though bear in mind that abuild's mingw support is not entirely complete.

3.4. Building a C++ Library
The directory cxx-library under doc/example/basic contains a simple C++ library. Our library is called basic-library.
It implements the single C++ class called BasicLibrary using the header file BasicLibrary.hh and the source file
BasicLibrary.cc. Here are the contents of those files:

basic/cxx-library/BasicLibrary.hh

#ifndef __BASICLIBRARY_HH__
#define __BASICLIBRARY_HH__

class BasicLibrary
{
 public:
 BasicLibrary(int);
 void hello();

 private:
 int n;
};

#endif // __BASICLIBRARY_HH__

basic/cxx-library/BasicLibrary.cc

#include "BasicLibrary.hh"
#include <iostream>

BasicLibrary::BasicLibrary(int n) :
 n(n)
{
}

void
BasicLibrary::hello()
{
 std::cout << "Hello. This is BasicLibrary(" << n << ")." << std::endl;
}

Building this library is quite straightforward. Abuild's build files are generally declarative in nature: they describe what
needs to be done rather than how it is done. Building a C or C++ library is a simple matter of creating an Abuild.mk

Basic Operation

13

file that describes what the names of the library targets are and what each library's sources are, and then tells abuild to
build the targets using the C and C++ rules. Here is this library's Abuild.mk file:

basic/cxx-library/Abuild.mk

TARGETS_lib := basic-library
SRCS_lib_basic-library := BasicLibrary.cc
RULES := ccxx

The string ccxx as the value of the RULES variable indicates that this is C or C++ code (“c” or “cxx”). In order for
abuild to actually build this item, we also need to create an Abuild.conf file for it. The existence of this file is what
makes this into a build item. We present the file here:

basic/cxx-library/Abuild.conf

name: cxx-library
platform-types: native

In this file, the name key is used to specify the name of the build item and the platform-types key is used to help
abuild figure out on which platforms it should attempt to build this item. Finally, we want this build item to be able to
make the resulting library and header file available to other build items. This is done in its Abuild.interface file:

basic/cxx-library/Abuild.interface

INCLUDES = .
LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = basic-library

This tells abuild to add the directory containing this file to the include path, the output directory in which the generated
targets were created to the library path, and the basic-library library to the list of libraries to be linked with. Notice that
the name of the library assigned to the LIBS variable is the same as the value assigned to the TARGETS_lib variable in
the Abuild.mk file, and that the abuild-provided variable $(ABUILD_OUTPUT_DIR) is used as the library directory.
All relative paths specified in the Abuild.interface file are relative to the directory that contains the Abuild.interface
file. They are automatically converted internally by abuild to absolute paths, which helps to keep build items loca-
tion-independent.

To build this item, you would run the command abuild in the basic/cxx-library directory. Abuild will create an output
directory whose name would start with abuild- and be based on the platform or platforms on which abuild was building
this item. This is the directory to which the variable $(ABUILD_OUTPUT_DIR) refers in the Abuild.interface file.

There is a lot of capability hiding beneath the surface here and quite a bit of flexibility in the exact way in which this
can be done, but this is the basic pattern you will observe for the majority of C and C++ library build items.

3.5. Building a C++ Program
The directory basic/cxx-program contains a simple C++ program. This program links against the library created in our
previous example. Here is the main body of our program:

basic/cxx-program/program.cc

#include <BasicLibrary.hh>

Basic Operation

14

int main()
{
 BasicLibrary b(5);
 b.hello();
 return 0;
}

This program includes the BasicLibrary.hh header file from the cxx-library build item. Here is the Abuild.mk for
this build item:

basic/cxx-program/Abuild.mk

TARGETS_bin := cxx-program
SRCS_bin_cxx-program := program.cc
RULES := ccxx

Notice that this is very similar to the Abuild.mk from the library build item. The only real difference is that the TARGETS
and SRCS variables contain the word bin instead of lib. This tells abuild that these are executable targets rather than
library targets. Notice the conspicuous lack of any references to the library build item or the location of the headers
or libraries that it makes available. A principal feature of abuild is that this program build item does not need to know
that information. Instead, it merely declares a dependency on the cxx-library build item by name. This is done in
its Abuild.conf:

basic/cxx-program/Abuild.conf

name: cxx-program
platform-types: native
deps: cxx-library

Notice the addition of the deps key in this file. This tells abuild that our program build item depends on the library build
item. When abuild sees this, it automatically makes all the information in cxx-library's Abuild.interface available to
cxx-program's build, alleviating the need for the cxx-program build item to know the locations of these files. This
will also tell abuild that cxx-library must be built before we can build cxx-program.

To build this item, we just run the abuild command as we did for cxx-library. This will automatically build depen-
dency cxx-library before building cxx-program. In this way, you can can start a build from any build item and let
abuild automatically take care of building all of its dependencies in the correct order.

The output of running abuild in the cxx-program directory when starting from a clean build is shown below. Your
actual output will differ slightly from this. In particular, the output below has the string --topdir-- in place of
the path to doc/example, and the string <native> in place of your native platform. 1 Notice that abuild builds cxx-
library first and then cxx-program:

basic-cxx-program.out

abuild: build starting
abuild: cxx-library (abuild-<native>): all
make: Entering directory `--topdir--/basic/cxx-library/abuild-<native>'
Compiling ../BasicLibrary.cc as C++

1 All example output in this document is normalized this way since it all comes directly from abuild's test suite. Testing all the examples in the
test suite guarantees the accuracy of the examples and ensures that they work as advertised on all platforms for which abuild is released. Should
you wish to study abuild's test suite with the examples, be aware that the bold italicized text preceding each block of example output is the name
of the expected output file from the test suite.

Basic Operation

15

Creating basic-library library
make: Leaving directory `--topdir--/basic/cxx-library/abuild-<native>'
abuild: cxx-program (abuild-<native>): all
make: Entering directory `--topdir--/basic/cxx-program/abuild-<native>'
Compiling ../program.cc as C++
Creating cxx-program executable
make: Leaving directory `--topdir--/basic/cxx-program/abuild-<native>'
abuild: build complete

To remove all of the files that abuild created in any build item's directory, you can run abuild clean in that directory.
To clean everything in the build tree, run abuild --clean=all. More details of how to specify what to build and what
to clean can be found in Chapter 9, Telling Abuild What to Build, page 38.

3.6. Building a Java Library
In our next example, we'll demonstrate how to build a simple Java library. You will find the Java example in basic/ja-
va-library. The files here are analogous to those in our C++ library example. First, here is a Java implementation of
our BasicLibrary class:

basic/java-library/src/java/com/example/basic/BasicLibrary.java

package com.example.basic;

public class BasicLibrary
{
 private int n;

 public BasicLibrary(int n)
 {
 this.n = n;
 }

 public void hello()
 {
 System.out.println("Hello. This is BasicLibrary(" + n + ").");
 }
}

Next, look at Abuild.conf:

basic/java-library/Abuild.conf

name: java-library
platform-types: java

This is essentially identical to our C++ library except that the platform-types key has the value java instead of the
value native. This is always true for Java build items. Next, we'll look at the Abuild.groovy file:

basic/java-library/Abuild.groovy

parameters {
 java.jarName = 'java-library.jar'

Basic Operation

16

 abuild.rules = 'java'
}

Java build items have this file instead of Abuild.mk. The contents are very similar. The Abuild.groovy file contains
Groovy code that is executed inside a particular context provided by abuild. Most Abuild.groovy files will simply set
parameters that describe what will be built. In this file, we set the java.jarName parameter to the name of the JAR file
we are creating, and we set the abuild.rules parameter to the value 'java' to indicate that we are using the java rules.
For Java build items, we don't explicitly list the source files. Instead abuild automatically finds sources in a source
directory which is, by default, src/java. There are many more parameters that can be set, and you have considerable
flexibility about how to arrange things and how to get files into your Java archives. Abuild aims to allow you to build
by convention, but it gives you the flexibility to do things your own way when you want to. We provide detailed
information about the directory structure for Java builds in Section 19.3, “Directory Structure for Java Builds”, page
107.

Finally, look at the Abuild.interface file. This file provides information to other build items about what they should
add to their classpaths in order to make use of the JAR file created by this build item:

basic/java-library/Abuild.interface

declare java-library.archiveName string = java-library.jar
declare java-library.archivePath filename = \
 $(ABUILD_OUTPUT_DIR)/dist/$(java-library.archiveName)
abuild.classpath = $(java-library.archivePath)
abuild.classpath.manifest = $(java-library.archivePath)

You'll notice here that we are actually setting four different variables. Not all of these are required, but the pattern
here is one that you may well wish to adopt, especially if you are working in a Java Enterprise environment. The
first statement in the interface file declares a variable called java-library.archiveName as a string and initializes it to
the value java-library.jar. This syntax of declaring and initializing an interface variable was introduced into
abuild with version 1.1. Here we adopt a convention of using the build item name as the first field of the variable
name, and the literal string archiveName as the second field. By including the name of the build item in the name of
the interface variable, we reduce the possibility of creating a name clash. By providing a variable to hold the name of
the archive provided by this build item, we allow other build items to refer to this JAR file by name without having to
know what it is called. The second interface variable, java-library.archivePath, contains the full path to the archive.
(Notice that abuild puts the JAR file in the dist subdirectory of the abuild output directory.) This enables other build
items to refer to this archive by path without knowing any details beyond this naming convention and the name of
the providing build item. Making this type of information available in this way is not necessarily a straight Java “SE”
environment, but it can be very useful in a Java “EE” environment where build items that create EAR files may have
to reach into other build items to package their artifacts in higher level archives. Experience has shown that adopting
a convention like this and following it consistently will pay dividends in the end.

After setting these two build-item-specific variables, we assign to two built-in variables: abuild.classpath, and
abuild.classpath.manifest. Most simple JAR-providing build items will do this. Abuild actually provides multiple
classpath variables, each of which is intended to be used in a particular way. For a discussion, please see Section 17.5.3,
“Interface Variables for Java Items”, page 93.

As with the C++ library, it is possible to build this item by running abuild from the basic/java-library directory.

3.7. Building a Java Program
In Java, there is no deep distinction between a “library” and a “program” except that a JAR file that provides a program
must have a main method. If a JAR file contains a main method, it can be executed, though it can also be used as a
library. Here are the relevant files for the program example:

Basic Operation

17

basic/java-program/src/java/com/example/basic/BasicProgram.java

package com.example.basic;

import com.example.basic.BasicLibrary;

public class BasicProgram
{
 public static void main(String[] args)
 {
 BasicLibrary l = new BasicLibrary(10);
 l.hello();
 }
};

basic/java-program/Abuild.conf

name: java-program
platform-types: java
deps: java-library

basic/java-program/Abuild.groovy

parameters {
 java.jarName = 'java-program.jar'
 java.mainClass = 'com.example.basic.BasicProgram'
 java.wrapperName = 'java-program'
 abuild.rules = 'java'
}

A JAR file's manifest file may identify a class that contains a main method. Abuild adds the Main-Class attribute
to the manifest file when the java.mainClass parameter is set in the Abuild.groovy. In addition, abuild will create a
wrapper script if the java.wrapperName parameter is set. The wrapper script that abuild creates may be useful for
casual execution of the Java program for testing purposes, but it is generally not a substitution for having your own
deployment mechanism. In particular, the wrapper script references items from your classpath by their paths within the
build structure, and additionally, abuild's wrapper scripts are not as portable as the Java code that they help to invoke. 2

Here is the output of running abuild in this directory. As in the C++ program example, the output has been modified
slightly: in addition to the --topdir-- substitution, we have also filtered out time stamps and other strings that
could potentially differ between platforms:

basic-java-program.out

abuild: build starting
abuild: java-library (abuild-java): all
 [mkdir] Created dir: --topdir--/basic/java-library/abuild-java/classes
 [javac] Compiling 1 source file to --topdir--/basic/java-library/abu\
\ild-java/classes

2 Specifically, abuild generates different wrapper scripts depending on whether you're running on Windows or not. Although it would work to build
Java code on UNIX and run it on Windows, or vice versa, wrapper scripts generated on one platform are not portable to the other.

Basic Operation

18

 [mkdir] Created dir: --topdir--/basic/java-library/abuild-java/dist
 [jar] Building jar: --topdir--/basic/java-library/abuild-java/dist\
\/java-library.jar
abuild: java-program (abuild-java): all
 [mkdir] Created dir: --topdir--/basic/java-program/abuild-java/classes
 [javac] Compiling 1 source file to --topdir--/basic/java-program/abu\
\ild-java/classes
 [mkdir] Created dir: --topdir--/basic/java-program/abuild-java/dist
 [jar] Building jar: --topdir--/basic/java-program/abuild-java/dist\
\/java-program.jar
abuild: build complete

Part II. Normal Operation
In this part of the manual, we discuss the standard features of abuild. For most ordinary build problems, these chapters
provide all the information you will need. A few advanced topics are presented here. Where appropriate, they include
cross references to later parts of the document where functionality is covered in more depth. By the end of this part,
you should have a reasonably complete understanding of the structure of abuild's build trees, and a fairly complete
picture of abuild's overall functionality. You will know enough about abuild to be able to use it for tasks of moderate
complexity.

20

Chapter 4. Build Items and Build Trees
Now that we've had a chance to see abuild in action for a simple case, it's time to go into more detail about how things
fit together. In Section 3.2, “Basic Terminology”, page 11, we briefly defined the terms build item, build tree, and
build forest. In this chapter, we will describe them in bit more detail and briefly introduce a number of concepts that
apply to them.

4.1. Build Items as Objects

A precise definition of build item would state that a build item is any directory that contains an Abuild.conf. Perhaps
a more useful definition would say that a build item is the basic object that participates in abuild's object-oriented
view of a software build. A build item provides some service within a build tree. Most build items build some kind of
code: most often a library, executable, or Java archive. Build items may provide other kinds of services as well. For
example, a build item may implement a code generator, support for a new compiler, or the ability to make use of a third-
party software library. In addition, a build item may have certain attributes including a list of dependencies, a list of
supported flags, information about what types of platforms the build item may be built on, a list of traits, and other non-
dependency relationships to other build items. Each of these concepts is explored in more depth later in the document.

All build items that provide a service are required to have a name. Build item names must be unique within their build
tree and all other build trees accessible to their build tree since the build item name is how abuild addresses a build
item. Build item names consist of period-separated segments. Each segment may contain mixed case alphanumeric
characters, underscores, and dashes. Build item names are case-sensitive.

The primary mechanism for describing build items is the Abuild.conf file. This file consists of colon-separated key/
value pairs. A complete description of the Abuild.conf file may be found in Chapter 15, The Abuild.conf File, page
79. In the mean time, we will introduce keys as they become relevant to our discussion.

4.2. Build Item Files
Although every build item has an Abuild.conf file, there are various other files that a build item may have. We defer
a complete list and detailed discussion these files for later in the document, but we touch briefly upon a few of the
common ones here.

Abuild.conf
This is the most basic of the build item files, and it is the only file that must be present for every build item. We
sometimes refer to this as the build item configuration file.

Abuild.mk, Abuild.groovy
These are the files that direct abuild what to actually build in a given build item. Each build file is associated
with a specific backend. Exactly one of these files must be present in order for abuild to attempt to build a build
item. As such, these files are known as build files. When we say that a build item has or does not have a build
file, we are specifically talking about one of these files. In particular, it is important to note that Abuild.conf and
Abuild.interface are not considered build files. 1

Abuild.interface
The Abuild.interface file is present for every build item that wants to make some product of its build accessible to
other build items. We refer to this as the build item's interface file. There has been some confusion among some

1 Additionally, the files Abuild-ant.properties and Abuild-ant.xml are recognized as build files, associated with the deprecated xml-based ant back-
end.

Build Items and Build Trees

21

abuild users about the term interface. Please understand that abuild interfaces are distinct from Java interfaces,
C++ header files, and so forth, though they serve essentially the same function. If you view a build item as an
object, the abuild interface contains information about what services that object provides. It exposes the interfaces
through which other build items will access a given build item's products.

4.3. Build Trees

A build tree, as defined before, is a collection of build items arranged hierarchically in the file system. Like build
items, build trees have names, and are only referred to from other build trees by name. The root of a build tree is a
build item whose Abuild.conf contains the tree-name key. We refer to this item as the tree's root build item.

A build tree is formed as a result of the items it contains holding references to the locations of their children within
the file system hierarchy. These locations are named as relative paths in the child-dirs keys of the items' Abuild.conf
files. It is customary to have the value of child-dirs contain single path elements (i.e.just a directory without any
subdirectories), but this is also not a requirement: child-dirs entries may contain multiple path elements as long as
there are no Abuild.conf files in any of the intermediate directories. If a build item's child contains its own tree-name
key, that child build item is the root of a separate build tree that is part of the same forest, defined below. Otherwise,
the child build item is part of the same tree as its parent.

In addition to containing build items, build trees can contain other attributes. Among these are references to other build
trees, a list of supported traits, and a list of plugins. We will discuss these topics later in the document. These attributes
are defined using keys in the root build item's Abuild.conf file.

4.4. Build Forests

A build forest is a collection of build trees that are connected to each other by virtue of one tree's root build item being
referenced as a child of a build item in another tree in the forest. When abuild starts up, it looks for an Abuild.conf in
the current directory. It then walks up the file system one directory at a time looking for additional Abuild.conf files.
Eventually, it will either find the topmost Abuild.conf file, or it will find an Abuild.conf file that is not listed as a child
of the next higher one. Whichever of these cases is found first, the resulting Abuild.conf file is the root of the build
forest. The forest then consists of all the trees encountered by following all the child-dirs pointers from the forest root.

Note that, unlike with build items and trees, forests do not have names. Note also that, unlike with trees, there is no
explicit marker of the root of a build forest. This is very important as it allows you to extend a forest from above
without modifying the forest itself. For a more in-depth discussion, see Chapter 7, Multiple Build Trees, page 33.

Note that the hierarchy defined by the layout of build items in the file system is a file system hierarchy and nothing
more. It doesn't have to have any bearing at all on the dependency relationships among the build items. That said, it
is sensible to organize build items in a manner that relates to the architecture of the system, and this in turn usually
has implications about dependencies. Still, it is important to keep in mind that abuild is not file-system driven but
rather is dependency driven.

4.5. Special Types of Build Items
In further describing build items and their attributes, it is useful to classify build items into several types. Most build
items serve the purpose of providing code to be compiled. There are a number of special types of build items that serve
other purposes. We discuss these here:

root
 The root build item of a build tree is the topmost item in that tree. It has a tree-name key that gives the name of the
build tree. It is often the case that the root build item serves no purpose other than to hold onto tree-wide attributes.

Build Items and Build Trees

22

It is therefore permissible for a root build item to lack a name key. (See below for a discussion of unnamed build
items.) Keys that define attributes of the build tree may appear only in the root build item's Abuild.conf.

unnamed
 In order to refer to one build item from another, both build items must have names. Abuild requires that every
named build item in a build forest be named uniquely within that forest. A name is given to a build item by setting
the name key in its Abuild.conf. Sometimes, a build item exists for the sole purpose of bridging its parent with
its children in the file system. Such items do not need to be referenced by other build items, so they do not need
names. The only use of an unnamed build item is to serve as an intermediary during traversal of the file system.
Such a build item's Abuild.conf may only contain the child-dirs key. Abuild doesn't retain any information about
these build items. It simply traverses through them when locating build items at startup time. Unnamed build items
are the only types of build items that don't have to belong to any particular build tree. It is common for the root
of a forest to be an unnamed build item whose children are all roots of build trees.

interface-only
 Interface-only build items are build items that contain (in addition to Abuild.conf) an Abuild.interface file. They
do not build anything and therefore do not contain build files (such as Abuild.mk or Abuild.groovy). Since they have
nothing to build, abuild never actually invokes a backend on them. They are, however, included in all dependency
and integrity checks. A typical use of interface-only build items would be to add the locations of external libraries
to the include and library paths (or to the classpaths for Java items). There may also be some interface-only build
items that consist solely of static files (templated C++ classes, lists of constants, etc.). Interface-only build items
may also be used to declare interface variables that are used by other build items.

pass-through
 Pass-through build items are useful for solving certain advanced abuild problems. As such, there are aspects of
this definition that may not be clear on the first reading. Pass-through build items contain no build or interface files,
but they are named and have dependencies. This makes pass-through build items useful as top-level facades for
hiding more complicated build item structures. This could include build items that have private names relative to
the pass-through item, and it could also include structures containing build items that cross language and platform
boundaries. Several examples in the documentation use pass-through build items to hide private build item names.
For further discussion of using pass-through build items in a cross-platform environment, please see Section 24.4,
“Dependencies and Pass-through Build Items”, page 159.

plugin
Plugins are capable of extending the functionality of abuild beyond what can be accomplished in regular build
items. Plugins must be named and not have any dependencies. No other build items may depend on them. Plugins
are a topic in their own right. They are discussed in depth in Chapter 29, Enhancing Abuild with Plugins, page
185.

4.6. Integrating with Third-Party Software
Virtually every software development project has some need to integrate with third-party software libraries. In a tradi-
tional build system, you might list the include paths, libraries, and library directories right in your Makefile, build.xml,
or configuration file for whatever build system you are using. With abuild, the best way to integrate with a third-party
library is to use a build item whose sole purpose is to export that library's information using an Abuild.interface file.
In the simplest cases, a third-party library build item might be an interface only build item (described above) that
just includes the appropriate library directives in a static Abuild.interface file. For example, a build item that provides
access to the PCRE (Perl-compatible regular expression) libraries on a Linux distribution that has them installed in
the system's standard include path might just include an Abuild.interface with the following contents:

LIBS = pcrecpp pcre

For Java build items, a third-party JAR build item would typically append the path to the JAR file to the
abuild.classpath.external interface variable. (For a discussion of the various classpath variables, see Section 17.5.3,
“Interface Variables for Java Items”, page 93.)

Build Items and Build Trees

23

Sometimes, the process may be more involved. For example, on a UNIX system, it is often desirable to use autoconf
to determine what interface is required for a particular library. We present an example of using autoconf with abuild
in Section 18.3, “Autoconf Example”, page 99. Still other libraries may use pkg-config. For those libraries, it may
make sense to create a simple set of build rules that automatically generate an Abuild.interface after-build file (also
discussed in Section 18.3, “Autoconf Example”, page 99) by running the pkg-config command. An example pkg-
config build item may be found in the abuild-contrib package available at abuild's web site [http://www.abuild.org].

Whichever way you do it for a given package, the idea is that you should always create a build item whose job it is to
provide the glue between abuild and the third-party library. Other build items that need to use the third-party library
can then just declare a dependency on the build item that provides the third-party library's interface. This simplifies
the process of using third-party libraries and makes it possible to create a uniform standard for doing so within any
specific abuild build tree. It also alleviates the need to duplicate information about the third-party library throughout
your source tree. Whenever you are duplicating knowledge about the path of some entity, you would probably be better
off creating a separate build item to encapsulate that knowledge.

http://www.abuild.org
http://www.abuild.org

24

Chapter 5. Target Types, Platform
Types, and Platforms
Abuild was designed with multiplatform operation in mind from the beginning. Up to this point, we have largely
glossed over how abuild deals with multiple platforms. In this chapter, we will cover this aspect of abuild's operation
in detail.

5.1. Platform Structure
Abuild classifies platforms into a three-level hierarchy. The three levels are described by the following terms:

target type
 A target type encompasses the overall kind of targets that are being built. A target type essentially encapsulates
a build paradigm. Abuild understands three target types: platform-independent for truly platform-inde-
pendent products like scripts and documentation, object-code for compiled object code like C and C++, and
java for Java byte code and related products. One could argue that Java code is platform-independent, but since
Java code has its own build paradigm, abuild considers it to be a separate target type. Be careful not to confuse
target type with target, defined in Section 3.2, “Basic Terminology”, page 11.

platform type
 A platform type essentially defines a grouping of platforms. Platform types belong to target types and contain
platforms. When configuring build items, developers assign build items to platform types rather than to platforms
or target types. The platform-independent target type has only platform type: indep. The java target
type has only one platform type: java. 1 Platform types are most useful in the object-code target type. Abuild
has only one built-in platform type in the object-code target type: native. The native platform type
applies to build items that are expected to be able to be built and run on the host platform. Additional platform types
to support embedded platforms or cross compilers can be added in plugins (see Section 29.3, “Adding Platform
Types and Platforms”, page 186).

platform
 The abuild platform is the lowest level of detail in describing the environment in which a target is intended to
be used. The expectation is that compiled products (object files, libraries, binary executables, java class files,
etc.) produced for one platform are always compatible with other products produced for that platform but are not
necessarily compatible with products produced for a different platform. If two different versions of a compiler
generate incompatible object code (because of incompatible runtime library versions or different C++ name man-
gling conventions, for example), then a host running one compiler may generate output belonging to a different
platform from the same host running a different version of the compiler. For the indep platform type in the
platform-independent target type, there is only one platform, which has the same name as the platform
type: indep. For the java platform type in the java target type, there is also only one platform, which also
shares its name with the platform type: java. Platforms become interesting within the object-code target
type. When we refer to platforms, we are almost always talking about object-code platforms.

This table (Table 5.1, “Built-in Platforms, Platform Types, and Target Types”, page 25) shows the target types
along with the built-in platform types and platforms that belong to them.

1 At one time, it was planned for abuild to support different platform types for different versions of Java byte code. Although this would have been
useful for build trees that had complex requirements for mixing JDKs of different versions, this capability would have added a lot of complexity
to support a practice that is unusual and largely undesirable.

Target Types, Platform
Types, and Platforms

25

Table 5.1. Built-in Platforms, Platform Types, and Target Types

Target Type Platform Type Platform

object-code native based on available tools

java java java

platform-independent indep indep

When a build item is defined with multiple platform types, they must all belong to the same target type. (Since the
only target type that has more than one platform type is object-code, this means the target type of a build item
with multiple platform types will always be object-code.) Some interface variables are also based on target type.
For example, it may be permissible for a java build item to depend on a C++ build item if the C++ build item exports
native code or provides an executable code generator, but it would never make sense for a java build item to have
an include path or library path in the sense of a C/C++ build item. When one build item depends on another, the
platforms on which the two build items are being built come into play. We discuss this in Chapter 24, Cross-Platform
Support, page 155.

5.2. Object-Code Platforms
For target type object-code, platform identifiers are of the form os.cpu.toolset.compiler[.option], de-
scribed below. In all cases, each field of the platform identifier must consist only of lower-case letters, numbers, dash,
or underscore. The fields of the platform identifier are as follows:

os
A broad description of the operating system, such as linux, solaris, windows, cygwin, or vxworks

cpu
A CPU type identifier such as ix86, x86_64, ppc, ppc64, or sparc.

toolset
A user-defined label for a collection of tools. This is a convenience field to separate things like different versions
of compilers or runtime libraries. It can be set to any string, at which point the user is responsible for ensuring
that it does in fact define a meaningful collection of tools. By default, abuild will create a toolset name based on
the operating system distribution or similar factors. Examples include rhel4 on a Red Hat Enterprise Linux 4
system, or deb5 on a Debian GNU/Linux 5.x system. 2

compiler
An identifier for the compiler C/C++ compiler toolchain to be used. Abuild has built-in support for gcc on UNIX
systems and for Microsoft Visual C++ and mingw on Windows systems. Users can provide their own compiler
toolchains in addition to these. The mechanism for adding new compilers is described in Section 29.3, “Adding
Platform Types and Platforms”, page 186.

option
An optional field that is used to pass additional information to the GNU Make code that implements support for
the compiler. Typical uses for options would be to define different debugging, profiling, or optimization levels.

All of the fields of the platform identifier are made available in separate variables within the interface parsing system.
In addition, for object-code build items, the make variable $(CCXX_TOOLCHAIN) is set to the value of the
compiler field. Here are some example platform identifiers:

2 At present, it is possible to add new toolsets easily with plugins, but the only way to override the built-in default toolset would be to edit private/bin/
get_native_platform_data, the perl script abuild uses to determine this information at startup. This may be addressed in a future version of abuild.

Target Types, Platform
Types, and Platforms

26

linux.ppc64.proj1default.gcc
linux.ppc64.proj1default.gcc.release
linux.ppc64.proj1default.gcc.debug
linux.x86.fc5.gcc
linux.x86.fc5.gcc.release
linux.x86.fc5.gcc.debug
windows.ix86.nt5.msvc
windows.ix86.cygwin-nt5.mingw
vxworks.pc604.windriver.vxgcc

5.3. Output Directories

When abuild builds an item, it creates an output directory under that item's directory for every platform on which that
item is built. The output directory is of the form abuild-platform-name. Abuild itself and all abuild-supplied rules
create files only inside of abuild output directories. 3

When abuild invokes make, it always does so from an output directory. This is true even for platform-independent
build items. In this way, even temporary files created by compilers or other build systems will not appear in the build
item's local directory. This makes it possible to build a specific item for multiple platforms in parallel without having
to be concerned about the separate builds overwriting each other's files.

When abuild builds items using the Groovy backend (and also using the deprecated xml-based ant backend), it performs
those builds inside a single Java virtual machine instance. As such, it does not change its working directory to the
output directory. (Java does not support changing current directories, and besides, there could be multiple builds going
on simultaneously in different threads.) However, each Java-based build has its own private ant Project whose basedir
property is set to the output directory. As such, all well-behaved ant tasks will only create files in the output directory.

3 Abuild considers any directory whose name starts with abuild- and which contains a file named .abuild to be an output directory.

27

Chapter 6. Build Item Dependencies
 Management of dependencies among build items is central to abuild's functionality. We have already gotten a taste of
this capability in the basic examples included in Chapter 3, Basic Operation, page 11. In this chapter, we will examine
dependencies in more depth.

6.1. Direct and Indirect Dependencies

The sole mechanism for declaring dependencies among build items in abuild is the deps key in a build item's
Abuild.conf. Suppose build item A declares build item B as a dependency. The following line would appear in A's
Abuild.conf:

deps: B

This declaration causes two things to happen:

• It ensures that B will be built before A.

• It enables A to see all of the variable declarations and assignments in B's Abuild.interface file.

We illustrate both of these principles later in this chapter. For an in-depth discussion of build ordering and dependen-
cy-aware builds, see Chapter 9, Telling Abuild What to Build, page 38. For an in-depth discussion of abuild's
interface system, see Chapter 17, The Abuild Interface System, page 83.

Another very important point about dependencies in abuild is that they are transitive. In other words, if A depends on
B and B depends on C, then A also implicitly depends on C. This means that the conditions above apply to A and
C. That is, C is built before A (which it would be anyway since it is built before B and B is built before A), and A
sees C's interface in addition to seeing B's interface. 1 Assuming that A does not explicitly list C in its deps key, we
would call B a direct dependency of A and C an indirect dependency of A. We also say that build item dependencies
are inherited when we wish to refer to the fact that build ordering and interface visibility are influenced by both direct
and indirect dependencies.

Abuild performs various validations on dependencies. The most important of these is that no cyclic dependencies are
permitted. 2 In other words, if A depends on B either directly or indirectly, then B cannot depend on A directly or
indirectly. There are other dependency validations which are discussed in various places throughout this document.

By default, any build item can depend on any other build item by name. Abuild offers two mechanisms to restrict which
items can depend on which other items. One mechanism is through build item name scoping rules, discussed below.
The other mechanism is through use of multiple build trees, discussed in Chapter 7, Multiple Build Trees, page 33.

6.2. Build Order
Abuild makes no specific commitments about the order in which items will be built except that no item is ever built
before its dependencies are built. The exact order in which build items are built, other than that dependencies are built
before items that depend on them, should be considered an implementation detail and not relied upon. When abuild is
invoked in with multiple threads (using the --jobs option, as discussed in Chapter 13, Command-Line Reference, page

1 In fact, since B depends on C, C's interface is effectively included as part of B's interface. This makes C's interface visible to all build items that
depend on B. The exact mechanism by which this works is described in Chapter 17, The Abuild Interface System, page 83.
2 Stated formally, abuild requires that build item dependencies form a directed acyclic graph.

Build Item Dependencies

28

70), it may build multiple items in parallel. Even in this mode, abuild will never start building one build item until
all of its dependencies have been built successfully.

6.3. Build Item Name Scoping
In this section, we discuss build item name scoping rules. Build item name scoping is one mechanism that can be used
to restrict which build items may directly depend on which other build items.

 Build item names consist of period-separated segments. The period separator in a build item's name is a namespace
scope delimiter that is used to determine which build items may directly refer to which other build items in their
Abuild.conf files. It is a useful mechanism for allowing a build item to hide the fact that it is composed of lower-level
build items by blocking others from accessing those lower-level items directly.

Each build item belongs to a namespace scope equal to the name of the build item after removing the last period and
everything following it. For example, the build item “A.B.C.D” is in the scope called “A.B.C”. We would consider
“A.B” and “A” to be ancestor scopes. The build item name itself also defines a scope. In this case, the scope “A.B.C.D”
would contain “A.B.C.D.E”. Any build item name scope that starts with “A.B.C.D.” (including the period) would be
a descendant scope to “A.B.C.D”. Any build item whose name does not contain a period is considered to belong to
the global scope and is accessible by all build items.

One build item is allowed to access another build item by name if the referenced build item belongs to the accessing
build item's scope or any of its ancestor scopes. Figure 6.1, “Build Item Scopes”, page 29, shows a number of
build items arranged by scope. In this figure, each build item defines a scope whose members appear in a gray box at
the end of a semicircular arrowhead originating from the defining build item. Each build item in this figure can see
the build items that are direct members of the scope that it defines, the build items that are siblings to it in its own
scope, and the build items inside of any of its ancestor scopes. You may wish to study the figure while you follow
along with the text below.

Build Item Dependencies

29

Figure 6.1. Build Item Scopes

Build items are shown here grouped by scope. Each build item is connected to the scope that it defines.

To illustrate, we will consider item A1.B1.C1. The build item A1.B1.C1 can access the following items for the
following reasons:

• A1.B1.C1.D1 because it belongs to the scope that A1.B1.C1 defines: A1.B1.C1

• A1.B1.C2 because it is in the same scope as A1.B1.C1: A1.B1

• A1.B1 and A1.B2 because they belong to an ancestor scope: A1

• A1 and Q because they are global

It cannot access these items:

• A1.B1.C1.D1.E1 because it is hidden in scope A1.B1.C1.D1

• A1.B1.C2.D1 because it is hidden in scope A1.B1.C2

• Q.R because it is hidden in scope Q

The item A1.B1.C1 can be accessed by the following items:

• A1.B1 because it is its parent

Build Item Dependencies

30

• A1.B1.C2 because it is its sibling

• A1.B1.C1.D1 and A1.B1.C1.D1.E1 because they are its descendants

• A1.B1.C2.D1 because it can see A1.B1.C1 as a member of its ancestor scope A1.B1

It cannot be accessed by these items:

• A1.B2, A1, Q, and Q.R, none of which can see inside of A1.B1

To give a more concrete example, suppose you have a globally accessible build item called networking that was in-
ternally divided into private build items networking.src and networking.test. A separate build item called logger
would be permitted to declare a dependency on networking but not on networking.src or networking.test. As-
suming that it did not create any circular dependencies, networking.test would also be allowed to depend on logger.

Note that these restrictions apply only to explicitly declared dependencies. It is common practice to implement a
“public” build item as multiple “private” build items. The public build item itself would not have an Abuild.interface
file, but would instead depend on whichever of its own private build items contain interfaces it wants to export. It
would, in fact, be a pass-through build item. Because dependencies are inherited, items that depend on the public
build item will see the interfaces of those private build items even though they would not be able to depend on them
directly. In this way, the public build item becomes a facade for the private build items that actually do the work. For
example, the build item networking would most likely not have its own Abuild.interface or Abuild.mk files. Instead, it
might depend on networking.src which would have those files. It would probably not depend on networking.test
since networking.test doesn't have to be built in order to use networking. 3 This means that it would be okay for
networking.test to depend on networking since doing so would not create any circular dependencies. Then, any
build items that depend on networking indirectly depend on networking.src and would see networking.src's
Abuild.interface.

There is nothing that a build item can do to allow itself to declare a direct dependency on another build item that is
hidden within another scope: the only way to gain direct access to a build item is to be its ancestor or to be a descendant
of its parent. (There are no restrictions on indirect access.) There are times, however, when it is desirable for a build
item to allow itself to be seen by build items who would ordinarily not have access to it. This is accomplished by
using the visible-to key in Abuild.conf. We defer discussion of this feature until later; see Chapter 25, Build Item
Visibility, page 166.

6.4. Simple Build Tree Example
Now that the topic of build items and build trees has been explored in somewhat more depth, let's take a look at a simple
but complete build tree. The build tree in doc/example/general/reference/common illustrates many of the concepts
described above.

The first file to look at is the Abuild.conf belonging to this tree's root build item:

general/reference/common/Abuild.conf

tree-name: common
child-dirs: lib1 lib2 lib3
supported-traits: tester

3 Although networking doesn't have to depend on networking.test, you might be tempted to put the dependency in so that when you run the
check target for all dependencies of networking, you would get the test suite implemented in networking.test. Rather than using a dependency
for this purpose, you can use a trait instead. For information about traits, see Section 9.5, “Traits”, page 42. A specific example of using traits
for this purpose appears in that section.

Build Item Dependencies

31

This is a root build item configuration file, as you can see by the presence of the tree-name key. Notice that it lacks a
name key, as is often the case with the root build item. This Abuild.conf contains the names of some child directories
and also a build tree attribute: supported-traits, which lists the traits that are allowed in the build tree. We will return
to the topic of traits in Section 9.5, “Traits”, page 42. In the mean time, we will direct our focus to the child build
items.

The first child of the root build item of this tree is in the lib1 directory. We examine its Abuild.conf:

general/reference/common/lib1/Abuild.conf

name: common-lib1
child-dirs: src test
deps: common-lib1.src

This build item is called common-lib1. Notice that the name of the build item is not the same as the name of the
directory, but it is based on the name of the directory. This is a typical strategy for naming build items. Abuild doesn't
care how you name build items as long as they conform to the syntactic restrictions and are unique within a build
tree. Coming up with a naming structure that parallels your system's architecture is a good way to help ensure that
you do not create conflicting build item names. However, you should avoid creating build item names that slavishly
follow your directory structure since doing so will make it needlessly difficult for you to move things around. A major
feature of abuild is that nothing cares where a build item is located, so don't set a trap for yourself in which you have
to rename a build item when you move it!

This build item does not have any build or interface files. It is a pass-through build item. It declares a single dependency:
common-lib1.src, and two child directories: src and test.

Next, look at the common-lib1.src build item's Abuild.conf in the common/lib1/src directory:

general/reference/common/lib1/src/Abuild.conf

name: common-lib1.src
platform-types: native

The first thing to notice is this build item's name. It contains a period and is therefore private to the common-lib1
scope. That means that it is not accessible to build items whose names are not also under that scope. In particular, a
build item called common-lib2 would not be able to depend directly on common-lib1.src. It would instead depend
on common-lib1 and would inherit the dependency on common-lib1.src indirectly.

This build item doesn't list any child directories and, as such, is a leaf in the file system hierarchy. It also happens
not to declare any dependencies, so it is also a leaf in the dependency tree, though one does not imply the other. This
build item configuration file contains the platform-types key, as is required for all build items that contain build or
interface files. In addition to the Abuild.conf file, we have an Abuild.mk file and an Abuild.interface file:

general/reference/common/lib1/src/Abuild.mk

TARGETS_lib := common-lib1
SRCS_lib_common-lib1 := CommonLib1.cpp
RULES := ccxx

general/reference/common/lib1/src/Abuild.interface

INCLUDES = ../include

Build Item Dependencies

32

LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = common-lib1

There is nothing in these files that is fundamentally different from the basic C++ library example shown in Section 3.4,
“Building a C++ Library”, page 12. We can observe, however, that the INCLUDES variable in Abuild.interface actually
points to ../include rather than the current directory. This simply illustrates that abuild doesn't impose any restrictions
on how you might want to lay out your build items, though it is recommended that you pick a consistent way and
stick with it for any given build tree. You should also avoid paths that point into other build items. Instead, depend
on the other item and put the variable there. As a rule, if you ever have two interface variables or assignments that
resolve to the same path, you are probably doing something wrong: a significant feature of abuild is that allows you to
encapsulate the location of any given thing in only one place. Instead, figure out who owns a given file or directory and
export it from that build item's interface. We will not study the source and header files in this example here, but you
are encouraged to go to the doc/example/general/reference/common directory in your abuild source tree or installation
directory to study the files further on your own.

Next, look at the test directory. Here is its Abuild.conf:

general/reference/common/lib1/test/Abuild.conf

name: common-lib1.test
platform-types: native
deps: common-lib1
traits: tester -item=common-lib1.src

Notice that it declares a dependency on common-lib1. Since its name is also private to the common-lib1 scope,
it would have been okay for it to declare a dependency directly on common-lib1.src. Declaring its dependency on
common-lib1 instead means that this test code is guaranteed to see the same interfaces as would be seen by any
outside user of common-lib1. This may be appropriate in some cases and not in others, but it demonstrates that
it is okay for a build item that is inside of a particular namespace scope to depend on its parent in the namespace
hierarchy. This build item also declares a trait, but we will revisit this when we discuss traits later in the document
(see Section 9.5, “Traits”, page 42).

In addition to the lib1 directory, we also have lib2 and lib3. These are set up analogously to lib1, so we will not inspect
every file. We will draw your attention to one file in particular: observe that the common-lib2.src build item in
reference/common/lib2/src declares a dependency on common-lib3:

general/reference/common/lib2/src/Abuild.conf

name: common-lib2.src
platform-types: native
deps: common-lib3

We will return to this build tree later to study build sets, traits, and examples of various ways to run builds.

33

Chapter 7. Multiple Build Trees
In large development environments, it is common to have collections of code that may be shared across multiple
projects, and it's also common to have multiple development efforts being worked in parallel with the intention of
integrating them at a later date. Ideally, such collections of shared code should be accessible by multiple projects but
should not be able to access code from the those projects, and parallel development efforts should be kept independent
to the maximum possible extent. In order to support this distributed and parallel style of software development, abuild
allows you to divide your work up into multiple build trees, which coexist in a build forest. These trees can remain
completely independent from each other, and you can also establish one-way dependency relationships among trees.

We define the following additional terms:

local build tree
 The local build tree is the build tree that contains the current directory.

tree dependency
 A tree dependency is a separate build tree whose items can supplement the local build tree. Build items in the
local build tree can resolve the names of build items in the tree named as a tree dependency, but build items in
the dependency cannot see items in the dependent (local) build tree.

top-level Abuild.conf
 The top-level Abuild.conf is an Abuild.conf file that is higher in th file system than any other Abuild.conf file in
the build forest. If you are building a single tree, the top-level Abuild.conf file is typically the root build item of
that tree. If you are building multiple trees, you have to create a higher-level Abuild.conf file that can reach the
roots of all the trees you are going to use, directly or indirectly, through its child-dirs key.

7.1. Using Tree Dependencies
Even when abuild knows about multiple trees, it still won't allow items in one build tree to refer to items in other trees
without an explicit instruction to do so. This makes it possible to ensure that items in one tree are not accidentally
modified to depend on items in a tree that is supposed to be unrelated. When you want items in one tree to be able to
use items in another tree, you declare a tree dependency of one tree on another. This creates a one-way relationship
between the two trees such that items in the dependent tree (the one that declares the dependency) can see items in the
tree on which it depends, but no visibility is possible in the other direction. To declare a tree dependency, you list the
name of the tree dependency in the tree-deps key of the dependent tree's Abuild.conf file. As with item dependencies
listed in deps, abuild requires that there are no cycles among tree dependencies.

There is nothing special about a build tree that makes it able to be the target of a tree dependency: any tree can depend
on any other tree as long as no dependency cycles are created.

Once you set up another tree as a tree dependency of your tree, all build items defined in the tree named by the tree
dependency are available to you (subject to normal scoping rules) as if they were in your local build tree. Since any
tree can potentially have a dependency relationship with any other, abuild enforces that none of the build items in
any build tree may have the same name as any build item in any tree in the forest. In order to avoid build item name
clashes, it's a good idea to pick a naming convention for your build items that includes some kind of tree-based prefix,
as we have done with names like common-lib1.

7.2. Top-Level Abuild.conf
When you declare another tree as a tree dependency of your tree, you declare your dependency on the other tree by
mentioning its name in the tree-deps of your tree's root Abuild.conf. In order for this dependency to work, abuild must

Multiple Build Trees

34

know where to find the tree. Abuild finds items and trees in the same way: it traverses the build forest from the top
down and creates a table mapping names to paths. If the tree your tree depends on is inside of your tree, this poses no
problem. But what if it is an external tree that is not inside your tree? In this instance, you must place the external tree
somewhere within your overall build area, such as in another subdirectory of the parent of your own tree's root. Then
you must create an Abuild.conf file in that common parent directory that knows about the root directories of the two
trees. This is illustrated in Figure 7.1, “Top-Level Abuild.conf”, page 34.

Figure 7.1. Top-Level Abuild.conf

Tree A declares a tree dependency on tree B. In order for A to find B, an Abuild.conf file that points to both trees'
locations must be created in a common ancestor directory. The ovals show the contents of each directory's Abuild.conf
files.

The tree named B has an Abuild.conf that that declares no tree dependencies. It is a self-contained tree. However,
A's Abuild.conf file mentions B by name. How does A find B? When you start abuild, it walks up the tree to find
the highest-level Abuild.conf (or the highest level one not referenced as a child of the next higher Abuild.conf) and
traverses downward from there. In this case, the Abuild.conf in A's parent directory knows the locations of both A and
B. In this way, abuild has figured out where to find B when A declares the tree dependency. This is illustrated with
a concrete example below.

7.3. Tree Dependency Example
In order for abuild to use multiple trees, it must be able to find the roots of all the trees when it traverses the file
system looking for Abuild.conf files. As described earlier, abuild locates the root of the forest by looking up toward
the root of the file system for other Abuild.conf files that list previous Abuild.conf directories in their child-dirs key.
The parent directory of our previous example contains (see Section 6.4, “Simple Build Tree Example”, page 30) the
following Abuild.conf file:

general/reference/Abuild.conf

child-dirs: common project derived

This is an unnamed build item containing only a child-dirs key. The child-dirs key lists not only the common di-
rectory, which is the root of the common tree, but also two other directories: project and derived, each of which we
will discuss below. These directories contain additional build tree root build items, thus making them known to any
abuild invocation that builds common. It is also okay to create one build tree underneath another named tree. As with
build items, having one tree physically located beneath another doesn't have any implications about the dependency
relationships among the trees.

Multiple Build Trees

35

We will examine a new build tree that declares the build tree from our previous example as an dependency. This new
tree, which we will call the project build tree, can be found at doc/example/general/reference/project. The first file we
examine is the new build tree's root build item's Abuild.conf:

general/reference/project/Abuild.conf

tree-name: project
tree-deps: common
child-dirs: main lib

This build item configuration file, in addition to having the tree-name key (indicating that it is a root build item), also
has a tree-deps key, whose value is the word common, which is the name of the tree whose items we want to use. Note
that, as with build items, abuild never requires you to know the location of a build tree.

Inside the project build tree, the project-lib build item is defined inside the lib directory. It is set up exactly the same
way as common-lib1 and the other libraries in the common tree. Here is its Abuild.conf:

general/reference/project/lib/Abuild.conf

name: project-lib
child-dirs: src test
deps: project-lib.src

Now look at project-lib.src's Abuild.conf:

general/reference/project/lib/src/Abuild.conf

name: project-lib.src
platform-types: native
deps: common-lib1

Notice that it declares a dependency on common-lib1, which is defined in the common tree. This works because
abuild automatically makes available to you all the build items in any build trees your depends on.

This build tree also includes a main program, but we will not go through the rest of the files in depth. You are encour-
aged to study the files on your own. There are also examples of traits in this build tree. We will return to this build
tree during our discussion of traits (see Section 9.5, “Traits”, page 42).

When you declare another build tree as a tree dependency, you automatically inherit any tree dependencies that that tree
declared, so like item dependencies, tree dependencies are transitive. If this were not the case, abuild would not be able
to resolve dependencies declared in the other tree if those dependencies were resolved in one of its tree dependencies.
To illustrate this, we have a third build tree located in doc/example/general/reference/derived. This build tree is for
a second project that is derived from the first project. This build tree declares project as an tree dependency as you
can see in its root Abuild.conf file:

general/reference/derived/Abuild.conf

tree-name: derived
tree-deps: project
child-dirs: main

For a diagram of the entire general/reference collection of build tress, see Figure 7.2, “Build Trees in general/refer-
ence”, page 36.

Multiple Build Trees

36

Figure 7.2. Build Trees in general/reference

The derived build tree declares a dependency on the project build tree. The project build tree declares a dependency
on the common build tree.

The derived build tree contains a derived-main build item structured identically to the C++ program build items
we've seen earlier. Here at the main program's Abuild.conf:

general/reference/derived/main/src/Abuild.conf

name: derived-main.src
platform-types: native
deps: common-lib2 project-lib
traits: tester -item=derived-main.src

In this file, you can see that derived-main.src depends on project-lib from the project build tree and also com-
mon-lib2 which is found in project's dependency, common. We will return to this build tree in the examples at the
end of Chapter 9, Telling Abuild What to Build, page 38.

37

Chapter 8. Help System
Abuild has a built-in help system, introduced in version 1.1, that makes it easier for users to get help for abuild itself
and also for available rules, both built-in and user-supplied. All help text that is part of the abuild distribution can also
be seen in Appendix E, Online Help Files, page 270.

The starting point to abuild's help system is the command abuild --help. Help is available on a variety of general topics
including the help system and command invocation. You can also get help on rules. You can see information about
what kinds of help is available on rules by running abuild --help rules.

The rules help facility offers three major capabilities. By running abuild --help rules list, you can see the list of
compiler toolchains and also the list of available rules that you can assign to RULES (make) or abuild.rules (Groovy).
In addition to telling you what's offered overall, this will tell you what target types the rules apply to, and whether
the rules are available to you through your dependency chain. That way, if you need to make use of a rule that is
provided by some build item that you don't depend on, you can know which item you need to add a dependency on
to gain access to the rule. Once you know which toolchain or rule you want help on, you can use abuild --help rules
toolchain:toolchain-name or abuild --help rules rule:rule-name to get available help for that toolchain or
rule.

Creating help files is very straightforward. For any toolchain support file or rule file, in the same directory, create a
text file called toolchain-name-help.txt or rule-name-help.txt as appropriate. The contents of this help file will
be displayed to the user when help is requested on that toolchain or rule. Lines within the help text that start with “#”
are ignored, which makes it possible for you to include notes to people who might be maintaining the help file. Also,
abuild normalizes line terminators, displaying the help with whatever the platform's native line terminator is.

We present examples of help files in this manual as we present information about adding rules and toolchain support
files. You can also run abuild --help helpfiles for a reminder about the help file format. (This text is also available
in Section E.2, “abuild --help helpfiles”, page 271.) To see an example of rule help, see Section 22.2, “Code
Generator Example for Make”, page 130. To see an example of toolchain help, see Section 29.5.3, “Platforms and
Platform Type Plugins”, page 194.

38

Chapter 9. Telling Abuild What to Build
Up to this point, we have seen only simple invocations of abuild to build a single item with all of its dependencies.
Abuild offers several ways of creating sets of build items to build or clean. These are known as build sets. In addition,
abuild's list of items to build can be expanded or restricted based on traits that are assigned to build items.

9.1. Build Targets
As defined in Section 3.2, “Basic Terminology”, page 11, the term target refers to a specific build product. In most
cases, abuild passes any targets specified on the command line to the backend build system. Abuild provides several
standard targets (see Chapter 13, Command-Line Reference, page 70). We have already encountered all and clean
in earlier examples. It is also possible to add new targets through mechanisms that are covered later in the document.
For now, you really only need to know a few things about targets:

• Different targets tell abuild to build different things.

• The all target is abuild's default target. When abuild builds a build item in order to satisfy a dependency, building
the all target is required to be sufficient to satisfy the needs of items that depend on it. This means that the all target
is responsible for building all parts of a build item that are potentially needed by any of its dependencies. This may
seem significant, but it's a detail that takes care of itself most of the time.

• With the exception of two special targets, abuild doesn't do anything itself with targets other than pass them onto
the backend build tool.

Abuild defines two special targets: clean and no-op. These targets are special in two ways: abuild does not allow them
to be combined with other targets, and abuild handles them itself without passing them to a backend.

The clean target is used to remove the artifacts that are built by the other targets. Abuild implements the clean target by
simply removing all abuild-generated output directories (see Section 5.3, “Output Directories”, page 26). When abuild
processes the clean target, it ignores any dependency relationships among build items. Since it ignores dependencies
and performs the cleanup itself without invoking a backend, running the clean target or cleaning multiple items using
a clean set (described below) is very fast.

Note that, starting with version 1.0.3, abuild cleans all build items, not just those with build files. There are several
reasons for this:

• In certain debugging modes, such as interface debugging mode, abuild may create output directories for items that
don't build anything.

• You might change a build item from an item that builds something to an interface-only build item. In this case, you
will want a subsequent clean to remove the no-longer-needed output directories.

• Although it is not necessarily recommended, there are some use cases in which build items may “push” files into
the output directory of an interface-only build item. Some people may choose to implement installers that work this
way. Having abuild clean interface-only build items makes it easier to clean up in those cases.

The no-op target is used primarily for debugging build tree problems. When abuild is invoked with the no-op target, it
goes through all the motions of performing a build except that it does not read any Abuild.interface files or invoke any
backends. It does, however, perform full validation of Abuild.conf files including dependency and integrity checking.
This makes abuild no-op, especially with a build set (described below), very useful for taking a quick look at what
items would be built on what platforms and in what order. We make heavy use of the no-op target in the examples
at the end of this chapter so that we can illustrate certain aspects of build ordering without being concerned about the
actual compilation steps.

Telling Abuild What to Build

39

9.2. Build Sets

We have already seen that, by default, abuild will build all of the build items on which the current item depends (directly
or indirectly) in addition to building the current item. Now we generalize on this concept by introducing build sets. A
build set is a collection of build items defined by certain criteria. Build sets can be used both to tell abuild which items
to build and also to tell it which items to clean. 1 When abuild is invoked with no build set specified, its default behavior
is to build all of the current item's dependencies as well as the current item. Sometimes, you may wish to assume all
the dependencies are up to date and just build the current build item without building any of its dependencies. To do
this, you may invoke abuild with the --no-deps option. This will generally only work if all dependencies are up to date.
Using --no-deps is most convenient when you are in the midst of the edit/compile/test cycle on a single build item and
you want to save the time of checking whether a potentially long chain of dependencies is already up to date. 2

To instruct abuild to build all the items in a specific build set, run abuild --build=set-name (or abuild -b set-
name). To instruct abuild to clean all the items in a specific build set, run abuild --clean=set-name (or abuild -
c set-name). When building a build set, abuild will also automatically build any items that are direct or indirect
dependencies of any items in the build set. However, if you specify any explicit targets on the command line, abuild
will not, by default, apply those targets to items that it only added to the build set to satisfy dependencies; it will build
those items with the all target instead. This is important as it enables you to add custom targets to a build item without
necessarily having those targets be defined for build items it depends on. If you want abuild to build dependencies
with explicitly named targets as well, use the --apply-targets-to-deps option. When cleaning with a build set, abuild
does not ordinarily also clean the dependencies of the items in the set. To apply the clean target to all the dependencies
as well, we also use the --apply-targets-to-deps option. This is a bit subtle, so we present several examples below.

The following build sets are defined:

current
the current build item (i.e., the build item whose Abuild.conf is in the current directory); abuild's default behavior
is identical to --build=current

deps
all direct and indirect dependencies of the current build item but not the item itself

desc
all build items located at or below the current directory (items that are descendants of the current directory)

descending
alias for desc

down
alias for desc

local
all items in the build tree containing the item in the current directory; i.e., the local build tree without any of its trees
dependencies, noting that items in tree dependencies may, as always, still to be built to satisfy item dependencies

deptrees
all items in the build tree containing the item in the current directory as well as all items in any of its tree depen-
dencies 3

1 In retrospect, the term build item set would probably have been a better name for this. Just keep in mind that build sets can be used for both building
and cleaning, and that when we use build sets for cleaning, we sometimes call them clean sets instead.
2 In abuild 1.0, this was the default behavior, and the --with-deps option was required in order to tell abuild to build the dependencies.
3 This is what the [all] build set did in abuild 1.0. In abuild 1.1, [all] may be more expansive since abuild now actually knows about all trees in
the forest, not just those referenced by the current tree.

Telling Abuild What to Build

40

descdeptrees
all build items that are located at or below the current directory and are either in the current build tree or one of
its dependencies—effectively the intersection between desc and deptrees 4

all
all items in all known build trees, including those items in trees that are not related to the current build tree

name:item-name[,item-name,...]
all build items whose names are listed

pattern:regular-expression
all build items whose names match the given perl-compatible regular expression

Ordinarily, when you invoke abuild clean or abuild --clean=set-name, abuild will remove all output directories
for any affected build items. You may also restrict abuild to remove only specified output directories. There are two
ways to do this. One way is to run abuild clean from inside an output directory. In that case, abuild will remove all
the files in the output directory. 5 The other way is to use the --clean-platforms option, which may be followed by
a shell-style regular expression that is matched against the platform portion of the output directory name. Examples
are shown below.

9.2.1. Example Build Set Invocations
abuild

builds the all target for all dependencies of the current directory's build item and for the current directory; equiv-
alent to abuild --build=current

abuild --no-deps
builds the current directory without building any of its dependencies

abuild check (or abuild --build=current check)
builds the check target for the current build item and the all target for all of its direct and indirect dependencies

abuild --apply-targets-to-deps check
builds the check target for the current build item and all of its direct and indirect dependencies

abuild --build=local check
builds the check target for all build items in the local build tree and the all target for any dependencies of any
local items that may be satisfied in other trees

abuild --build=deptrees check
builds the check target for all build items in the local build tree and all of its tree dependencies

abuild --clean=current (or abuild clean)
removes all output directories for the current build item but not for any of its dependencies

abuild --clean=desc
removes all output directories for all build items at or below the current directory but not any of its dependencies

abuild --clean=all --clean-platforms java --clean-platforms '*.ix86.*'
for all build items, removes all abuild-java output directories and all output directories for platforms containing
the string “.ix86.”

4 This is what the [desc] build set did in abuild 1.0. In abuild 1.1, [desc] includes all build items at or below the current directory, but in abuild 1.0,
abuild didn't know about those not in the dependency chain of the current tree. This build set is provided so there is an equivalent in abuild 1.1 to
every build set from abuild 1.0. There are relatively few reasons to ever use it.
5 In abuild 1.0, abuild actually passed the clean target to the backend, but abuild version 1.1 handles this clean invocation internally as it does
for other clean invocations.

Telling Abuild What to Build

41

abuild --clean=current --apply-targets-to-deps
removes all output directories for the current build item and everything it depends on; useful when you want to
try a completely clean build of a particular item

abuild --apply-targets-to-deps --clean=desc
removes all output directories for all build items at or below the current directory and all of their direct or indirect
dependencies, including those that are not located at or below the current directory

abuild --build=name:lib1,lib2 xyz
builds the custom xyz target for the lib1 and lib2 build items and the all target for their direct or indirect depen-
dencies

abuild --build=pattern:'.*\.test'
builds the all target for any item whose name ends with .test and any of those items' direct or indirect depen-
dencies

abuild -b all
builds the all target for all build items in all known trees in the forest

abuild -c all
removes all output directories in all the build trees in the forest

9.3. Using build-also for Top-level Builds
Starting with abuild version 1.0.3, it is possible to list other build items in the build-also key of any named build item's
Abuild.conf file. Starting with abuild version 1.1.4, build-also keys can list entire trees and also add options to include
tree dependencies or other items at or below the item's directory. When abuild adds any build item to the build set, if
that build item has a build-also key, then any build items listed there are also added to the build set. The operation
of expanding initial build set membership using the build-also key is applied iteratively until no more build items are
added. The principal intended use of this feature is to aid with setting up virtual “top-level” build items. For example,
if your system consisted of multiple, independent subsystems and you wanted to build all of them, you could create a
build item that lists the main items for each subsystem in a build-also key.

Arguments to build-also may be as follows:

[item:]item-name [-desc]
Add item-name to the build set. The literal item: prefix may be omitted for backward compatibility.

If the -desc option is given, all items at or below the directory containing item-name are also added to the build
set. This is equivalent to running abuild --build=desc from item-name's directory.

tree:tree-name [-desc] [-with-tree-deps]
If tree:tree-name is specified by itself, all items in the build tree named tree-name are added to the build
set. This is equivalent to running abuild --build=local somewhere in that tree.

If -desc appears as an option by itself, all items at or below the directory containing the root of tree-name
are added to the build set. This is equivalent to running abuild --build=desc from the directory containing the
root of the tree.

If -with-tree-deps appears as an option by itself, all items in all trees that tree-name specifies as tree depen-
dencies are added to the build set in addition to all items in tree-name itself. This is equivalent to running
abuild --build=deptrees somewhere in that tree.

If -with-tree-deps and -desc are both specified, the result is to add the items that are in the intersection of the
two options specified individually. In other words, all items that are in any dependent tree and are at or below
the directory containing the root of the tree are added to the build set. This is equivalent to running abuild --

Telling Abuild What to Build

42

build=descdeptrees at the root of the build tree. Note that if you want the union of -desc and -with-tree-deps
instead of the intersection, you simply have to specify both tree:tree-name -desc and tree:tree-name
-with-tree-deps in the build-also key.

In older versions of abuild, the only way to force building of one build item to build another item was to declare
dependencies or tree dependencies. This had several disadvantages, including the following:

• Adding unnecessary dependencies puts needless constraints on build ordering and parallelism.

• Using dependencies for this purpose is clumsy if there are multiple target types involved. It would require you to
use a platform-specific dependency, which in turn could interfere with proper use of platform selectors.

• Otherwise harmless interface variable name clashes or assignment issues could cause problems as a result of having
two interfaces that were supposed to be independent being loaded together.

Whenever you want building of one build item to result in building of another build item and the first item doesn't
need to use anything from the items it causes to be built, it is appropriate to use build-also instead of a dependency.

9.4. Building Reverse Dependencies

Starting with abuild version 1.1, it is possible to use the --with-rdeps flag to instruct abuild to expand the build set by
adding all reverse dependencies of any build item initially in the build set. When combined with --repeat-expansion,
this process is applied iteratively so that all forward and reverse dependencies of every item in the build set will also
be in the build set. 6 This can be especially useful if you are changing a widely used item and you want to make sure
your change didn't break any build items that use your item. For additional details on how the build set is constructed,
see Section 33.5, “Construction of the Build Set”, page 217..

9.5. Traits

In abuild, it is possible to assign certain traits to a build item. Traits are a very powerful feature of abuild. This material
is somewhat more complicated than anything introduced up to this point, so don't worry if you have to read this section
more than once.

Traits are used for two main purposes. Throughout this material, we will refer back to the two purposes. We will also
provide clarifying examples later in the chapter.

The first purpose of traits is creation of semantically defined groups of build items. In this case, a trait corresponding
to the grouping criteria would be applied to a build item directly. For example, all build items that can be deployed
could be assigned the deployable trait.

A second purpose of traits is to create specific relationships among build items. These relationships may or may not
correspond to dependencies among build items. These traits may be applied to a build item by itself or in reference to
other build items. For example, the tester trait may be applied to a general system test build item by itself and may be
applied to every test suite build item with a reference to the specific item being tested.

Traits are used to assist in the construction of build sets. In particular, you can narrow a build set by removing all items
that don't have all of a specified list of traits. You can also expand a build set to add any build items that relate to any
items already in the set by referring to them through all of a specified list of traits. This makes it possible to say things
like “run the deploy target for every build item that has the deployable trait,” or “run the test target for every item
that tests my local build item or anything it depends on.”

6 Stated formally, when abuild is invoked with both --with-rdeps and --repeat-expansion, the build set is closed with respect to forward and
reverse dependencies.

Telling Abuild What to Build

43

Since traits are visible in abuild's --dump-data output (see Appendix F, --dump-data Format, page 296), they are
available to scripts or front ends to abuild. They may also be used for purely informational purposes such as specifying
the classification level of a build item or applying a uniform label to all build items that belong to some group. Trait
names are subject to the same constraints as build item names: they are case-sensitive and may consist of mixed case
alphanumeric characters, numbers, underscores, dashes, and periods. Unlike with build items, the period does not have
any semantic meaning when used in a trait name.

Starting with abuild 1.1.6, a build item that uses either the GNU Make backend or the Groovy backend (but not the
deprecated xml-based ant backend) may also get access to the list of traits that are declared in its Abuild.conf file. For
the GNU Make backend, the variable ABUILD_TRAITS contains a list of traits separated by spaces. For the Groovy
backend, the variable abuild.traits contains a groovy list of traits represented as strings. In both cases, any information
about referent build items is excluded; only the list of declared traits is provided. Possible uses for this information
would include having a custom rule check to make sure a given trait is specified before providing a particular target,
having it give an error if a particular trait is not defined, or even having it change behavior on the basis of a trait.

9.5.1. Declaring Traits
Any named build item may include a traits key that lists one or more of the traits that are supported in its build tree.
The list of traits supported in a build tree is given as the value of the supported-traits key in the root build item's
Abuild.conf. The list of supported traits is inherited through tree dependencies, so any trait declared as valid in any
trees your tree depends on are also available. The set of traits that can be specified on the command line is the union
of all traits allowed by all known trees.

Traits listed in the traits key can be made referent to other build items by listing the other build items in an -item option.
For example, the following Abuild.conf fragment declares that the potato.test build item is deployable, unclassified,
and a tester for the potato.lib and potato.bin build items:

this: potato.test
traits: deployable tester -item=potato.lib -item=potato.bin unclassified

9.5.2. Specifying Traits at Build Time
To modify the build set or clean set based on traits, use the --only-with-traits and --related-by-traits command-line
options to abuild. These options must be combined with the specification of a build set. They correspond to the two
purposes of traits discussed above.

To build all build items that have all of a specified list of traits, run abuild --build=set --only-with-traits
trait[,trait,...]. This is particularly useful when semantically grouped build items share a common custom target.
For example, if all the deployable build items had a special deploy target, you could run the deploy target for all
deployable items in the local build tree with the command

abuild --build=local --only-with-traits deployable deploy

If multiple traits are specified at once, only build items with all of the specified traits are included.

Once a build set has been constructed, you may want to add additional items to the set based on traits. Specifically,
you may want to add all items related by a trait to items already in the build set. To expand a build set in this way,
run abuild --build=set --related-by-traits trait[,trait,...] For example, if you wanted to run the test target for
all build items that are declared as testers (using the tester trait) of your build item or any of its dependencies, you
could run the command

abuild --build=current --related-by-traits=tester test

Telling Abuild What to Build

44

As above, if multiple traits are specified at once, only build items that are related by all of the specified traits are
included. Note that the same trait may be used referent to another build item or in isolation. The --related-by-traits
option only applies to traits used in reference to other build items. For example, if a build item had the tester trait not
referent to any build item, it would not be picked up by the above command. The --only-with-traits option picks up
all build items that have the named traits either in isolation or referent to other build items.

It is also possible to combine these options. In that case, the build set is first restricted using --only-with-traits and
then expanded using the --related-by-traits as shown in examples below. The order of the arguments has no effect
on this behavior.

Ordinarily, when a specific target is specified as an argument to abuild (as in abuild test or abuild deploy rather than
just abuild), abuild runs that target for every item initially in the build set (before dependency expansion). When the
build set is expanded or restricted based on traits, any explicitly specified targets are run only for build items that
have the specified traits. This is important because it enables you to use traits to group build items that define specific
custom targets.

If --related-by-traits and --only-with-traits are both specified, any explicit targets are applied only to traits named in
--related-by-traits as the effect of that option is applied last. All other build items are built with the all target. Note
that the --apply-targets-to-deps option will cause any explicit targets to be applied to all build items, as always. Later
in this chapter, we review the exact rules that abuild uses to decide which targets to apply to which build items.

The --list-traits flag provides information about which traits can be used on the command line. To see more detailed
information about which traits were made available in which build trees, you can examine the output of abuild --
dump-data (see Appendix F, --dump-data Format, page 296).

For more detailed information about how build sets are constructed with respect to traits, please see Section 33.5,
“Construction of the Build Set”, page 217.

9.5.3. Example Trait Invocations
abuild --build=desc --only-with-traits deployable deploy

Run the deploy target for all items at or below the current directory that have the deployable trait, and run the
all target for all items that they depend on.

abuild --build=current --related-by-traits tester test
Build the current build item and all of its dependencies with the all target, and run the test target for any build
items that declared themselves as a tester for any of those items. Any additional dependencies of the testers would
also be built with the all target.

abuild --build=local --only-with-traits deployable,tester deploy test
Run both the deploy and the test targets for any build items in the local build tree (the current build item's tree
excluding its tree dependencies) that have both the deployable and the tester traits either specified alone or in
reference to other build items. Run the all target for their dependencies.

abuild --build=all --only-with-traits requires-hw --related-by-traits tester hwtest
Run the all target for all items that have the requires-hw trait as well as any of their dependencies, and run the
hwtest target for all items that test any of them. Additional dependencies of the testers would also be built with
the all target.

9.6. Target Selection
Although we have described how various options affect which build items are built with which targets, we summarize
that information here so that it all appears in one place. Put simply, the default behavior is that abuild applies any
explicitly named targets to all build items that directly match the criteria for belonging to the named build set. Any

Telling Abuild What to Build

45

build items that abuild is building just to satisfy dependencies are built with the all target. This behavior is overridden
by specifying --apply-targets-to-deps, which causes abuild to build all build items with the explicit targets. The exact
rules are described in the list below. These rules apply only when a build set is specified with --build or -b. There
are several mutually exclusive cases:

1. The --apply-targets-to-deps option was specified or the explicit target is no-op. In this case, any explicitly named
targets are applied to all items in the build set.

2. The --apply-targets-to-deps option was not specified, the target is not no-op, and no trait arguments were specified.
In this case, all items that were initially added to the build set, along with any build items specified by any of their
build-also keys (with the build-also relationship applied recursively) are built with any explicitly specified targets.
Any other build items added to the build set to satisfy dependencies are built with the all target.

3. The --apply-targets-to-deps option was not specified, the target is not no-op, --only-with-traits was specified,
and --related-by-traits was not specified. In this case, all items belonging to the original build set (including build-
also expansion) and having all of the named traits are built with the explicit targets. Other items (dependencies of
build items with the named traits but that do not have the named traits themselves) are built with the all target.

4. The --apply-targets-to-deps option was not specified, the target is not no-op, and --related-by-traits was specified.
In this case, the build set is first constructed normally and then restricted to any items that have all the traits specified
in the --only-with-traits option, if any. Then it is expanded to include any build item related to one of the original
build set members by all the traits named in --related-by-traits. These related items are built with the explicit
targets. Other items, including additional dependencies of related items, are built with the all target.

For more detailed information on how the build set is constructed, please see Section 33.5, “Construction of the Build
Set”, page 217.

9.7. Build Set and Trait Examples
Now that we've seen the topics of build sets and traits, we're ready to revisit our previous examples. This time, we will
talk about how traits are used in a build tree, and we will demonstrate the results of running abuild with different build
sets. We will also make use of the special target no-op which can be useful for debugging your build trees.

9.7.1. Common Code Area
Any arguments to abuild that are not command-line options are interpreted as targets. By default, abuild uses the all
target to build each build item in the build set. If targets are named explicitly, for the build items to which they apply,
they are passed directly to the backend. There are two exceptions to this rule: the special targets clean and no-op are
trapped by abuild and handled separately without invocation of the backend. We have already seen the clean target:
it just removes any abuild output directories in the build item directory. The special no-op target causes abuild to go
through all the motions of building except for actually invoking the backend. The no-op command is useful for seeing
what build items would be built on what platforms in a particular invocation of abuild. It does all the same validation
on Abuild.conf files as a regular build, but it doesn't look at Abuild.interface files or build files (Abuild.mk, etc.).

We return now to the reference/common directory to demonstrate both the no-op target and some build sets. From the
reference/common directory, we can run abuild --build=local no-op to tell abuild to run the special no-op target for
every build item in the local build tree. Since this tree has no tree dependencies, there is no chance that there are any
dependencies that are satisfied outside of the local build tree. Running this command produces the following results
(with the native platform again replaced by the string <native>):

reference-common-no-op.out

abuild: build starting

Telling Abuild What to Build

46

abuild: common-lib1.src (abuild-<native>): no-op
abuild: common-lib1.test (abuild-<native>): no-op
abuild: common-lib3.src (abuild-<native>): no-op
abuild: common-lib2.src (abuild-<native>): no-op
abuild: common-lib2.test (abuild-<native>): no-op
abuild: common-lib3.test (abuild-<native>): no-op
abuild: build complete

Of particular interest here is the order in which abuild visited the items. Abuild makes no specific commitments
about the order in which items will be built except that no item is ever built before its dependencies are built. 7

Since common-lib2.src depends on common-lib3.src (indirectly through its dependency on common-lib3),
abuild automatically builds common-lib3.src before it builds common-lib2.src. On the other hand, since com-
mon-lib2.test has no dependency on common-lib3.test, no specific ordering is necessary in that case. If you were
to run abuild --clean=local from this directory, you would not observe the same ordering of build items since abuild
does not pay any attention to dependencies when it is running the clean target, as shown:

reference-common-clean-local.out

abuild: cleaning common-lib1 in lib1
abuild: cleaning common-lib1.src in lib1/src
abuild: cleaning common-lib1.test in lib1/test
abuild: cleaning common-lib2 in lib2
abuild: cleaning common-lib2.src in lib2/src
abuild: cleaning common-lib2.test in lib2/test
abuild: cleaning common-lib3 in lib3
abuild: cleaning common-lib3.src in lib3/src
abuild: cleaning common-lib3.test in lib3/test

Note also that only the build items that have Abuild.mk files are cleaned. Abuild knows that there is nothing to build
in items without Abuild.mk files and skips them when it is building or cleaning multiple items.

If you are following along, then go to the reference/common directory and run abuild --build=desc check. This will
build and run the test suites for all build items at or below that directory, which in this case, is the same collection
of build items as the local build set. 8 This produces the following output, again with some system-specific strings
replaced with generic values:

reference-common-check.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib1/src/a\
\build-<native>'
Compiling ../CommonLib1.cpp as C++
Creating common-lib1 library
make: Leaving directory `--topdir--/general/reference/common/lib1/src/ab\

7 In fact, when abuild creates a build order, it starts with a lexically sorted list of build trees and re-orders it as needed so that trees appear in
dependency order. Then, within each tree, it does the same with items. The effect is that items build by tree with most referenced trees building
earlier and, with each tree, most referenced items building earlier. Ties are resolved by lexical ordering. That said, the exact order of build items,
other than that dependencies are built before items that depend on them, should be considered an implementation detail and not relied upon. Also,
keep in mind that, in a multithreaded build, the order is not deterministic, other than that no item's build is started before all its dependencies'
builds have completed.
8 The test suites in this example are implemented with QTest [http://qtest.qbilt.org], which therefore must be installed for you to run them. See
Chapter 10, Integration with Automated Test Frameworks, page 57.

http://qtest.qbilt.org
http://qtest.qbilt.org

Telling Abuild What to Build

47

\uild-<native>'
abuild: common-lib1.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib1/test/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating lib1_test executable

STARTING TESTS on ---timestamp---

Running ../qtest/lib1.test
lib1 1 (test lib1 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib1/test/a\
\build-<native>'
abuild: common-lib3.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib3/src/a\
\build-<native>'
Compiling ../CommonLib3.cpp as C++
Creating common-lib3 library
make: Leaving directory `--topdir--/general/reference/common/lib3/src/ab\
\uild-<native>'
abuild: common-lib2.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib2/src/a\
\build-<native>'
Compiling ../CommonLib2.cpp as C++
Creating common-lib2 library
make: Leaving directory `--topdir--/general/reference/common/lib2/src/ab\
\uild-<native>'
abuild: common-lib2.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib2/test/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating lib2_test executable

STARTING TESTS on ---timestamp---

Telling Abuild What to Build

48

Running ../qtest/lib2.test
lib2 1 (test lib2 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib2/test/a\
\build-<native>'
abuild: common-lib3.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib3/test/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating lib3_test executable

STARTING TESTS on ---timestamp---

Running ../qtest/lib3.test
lib3 1 (test lib3 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib3/test/a\
\build-<native>'
abuild: build complete

This example includes the output of qtest test suites. QTest is a simple and robust automated test framework that
is integrated with abuild and used for abuild's own test suite. For information, see Section 10.2, “Integration with
QTest”, page 57.

By default, when abuild builds multiple build items using a build set, it will stop after the first build failure. Sometimes,
particularly when building a large build tree, you may want abuild to try to build as many build items as it can,
continuing on failure. In this case, you may pass the -k option to abuild. When run with the -k option, abuild will

Telling Abuild What to Build

49

continue building other items after one item fails. It will also exit with an abnormal exit status after it builds everything
that it can, and it will provide a summary of what failed. When run with -k, abuild also passes the corresponding flags
to the backends so that they will try to build as much as they can without stopping on the first error. Both the make and
Groovy backends behave similarly to abuild: they will keep going on failure, skip any targets that depend on failed
targets, and exit abnormally if any failures are detected.

Ordinarily, if one build item fails, abuild will not attempt to build any other items that depend on the failed item even
when run with -k. If you specify the --no-dep-failures option along with -k, then abuild will not only continue after
the first failure but will also attempt to build items even when one or more of their dependencies have failed. Use
of this option may result in cascading errors since the build of one item is likely to fail as a result of failures in its
dependencies. There are, however, several cases in which this option may still be useful. For example, if building a
large build tree with known problems in it, it may be useful to first tell abuild to build everything it possibly can.
Then you can go back and try to clean up the error conditions without having to wait for the compilation of files that
would have been buildable before. Another case in which this option may be useful is when running test suites: in
many cases, we may wish to attempt to run test suites for items even if some of the test suites of their dependencies
have failed. Essentially, running -k --no-dep-failures allows abuild to attempt to build everything that the backends
will allow it to build.

9.7.2. Tree Dependency Example: Project Code Area
Returning to the project area, we demonstrate how item dependencies may be satisfied in trees named as tree depen-
dencies and the effect this has on the build set. Under reference/project, we have just two public build items called
project-main and project-lib. The project-lib build item is structured like the libraries in the common area. The
project-main build item has a src directory that builds an executable and has its own test suite. We have already seen
that reference/project/Abuild.conf has a tree-deps key that lists common and that items from the project tree depend
on build items from common. Specifically, project-lib depends on common-lib1 and project-main depends on
common-lib2 which in turn depends on common-lib3.

If we go to reference/project/main/src and run abuild no-op, we see the following output:

reference-project-main-no-op.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): no-op
abuild: common-lib3.src (abuild-<native>): no-op
abuild: common-lib2.src (abuild-<native>): no-op
abuild: project-lib.src (abuild-<native>): no-op
abuild: project-main.src (abuild-<native>): no-op
abuild: build complete

Notice here that abuild only built the build items whose names end with .src, that it built the items in dependency
order, and that it built all the items from common before any of the items in project. We can also run abuild --
apply-targets-to-deps check to run the check target for each of these build items. This generates the following output:

reference-project-main-check.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): check
abuild: common-lib3.src (abuild-<native>): check
abuild: common-lib2.src (abuild-<native>): check
abuild: project-lib.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/project/lib/src/a\

Telling Abuild What to Build

50

\build-<native>'
Compiling ../ProjectLib.cpp as C++
Creating project-lib library
make: Leaving directory `--topdir--/general/reference/project/lib/src/ab\
\uild-<native>'
abuild: project-main.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/project/main/src/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating main executable

STARTING TESTS on ---timestamp---

Running ../qtest/main.test
main 1 (testing project-main) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/project/main/src/a\
\build-<native>'
abuild: build complete

The presence of the --apply-target-to-deps flag caused the check target will be run for our dependencies as well as
the current build item. In this case, there were no actions performed building the files in common because they were
already built. If individual files had been modified in any of these build items, the appropriate targets would have been
rebuilt subject to the ordinary file-based dependency management performed by make or ant.

9.7.3. Trait Example
In our previous example, we saw the check target run for each item (that has a build file). Since the items other than
project-main don't contain their own test suites, we see the test suite only for project-main. Sometimes we might
like to run all the test suites of all the build items we depend on, even if we don't depend on their test suites directly.
We can do this using traits, assuming our build tree has been set up to use traits for this purpose. Recall from earlier
that our common build tree declared the tester trait in its root build item's Abuild.conf. Here is that file again:

general/reference/common/Abuild.conf

tree-name: common
child-dirs: lib1 lib2 lib3
supported-traits: tester

Telling Abuild What to Build

51

Also, recall that all the test suites declared themselves as testers of the items that they tested. Here again is com-
mon-lib1.test's Abuild.conf, which declares common-lib1.test to be a tester of common-lib1.src:

general/reference/common/lib1/test/Abuild.conf

name: common-lib1.test
platform-types: native
deps: common-lib1
traits: tester -item=common-lib1.src

Given that all of our build items are set up in this way, we can instruct abuild to run the test suites for everything that
we depend on. We do this by running abuild --related-by-traits tester check. This runs the check target for every
item that declares itself as a tester of the current build item or any of its dependencies, and the all target for everything
else, including any additional dependencies of any of those test suites. That command generates the following output:

reference-project-main-trait-test.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): all
abuild: common-lib1.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib1/test/\
\abuild-<native>'

STARTING TESTS on ---timestamp---

Running ../qtest/lib1.test
lib1 1 (test lib1 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib1/test/a\
\build-<native>'
abuild: common-lib3.src (abuild-<native>): all
abuild: common-lib2.src (abuild-<native>): all
abuild: common-lib2.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib2/test/\
\abuild-<native>'

STARTING TESTS on ---timestamp---

Telling Abuild What to Build

52

Running ../qtest/lib2.test
lib2 1 (test lib2 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib2/test/a\
\build-<native>'
abuild: common-lib3.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/common/lib3/test/\
\abuild-<native>'

STARTING TESTS on ---timestamp---

Running ../qtest/lib3.test
lib3 1 (test lib3 class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/common/lib3/test/a\
\build-<native>'
abuild: project-lib.src (abuild-<native>): all
abuild: project-lib.test (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/project/lib/test/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating lib_test executable

Telling Abuild What to Build

53

STARTING TESTS on ---timestamp---

Running ../qtest/lib.test
lib 1 (test lib class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/project/lib/test/a\
\build-<native>'
abuild: project-main.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/project/main/src/\
\abuild-<native>'

STARTING TESTS on ---timestamp---

Running ../qtest/main.test
main 1 (testing project-main) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/project/main/src/a\
\build-<native>'
abuild: build complete

Observe that the previously unbuilt project-lib.test build item was built using the check target by this command,
and that all the test suites were run. If your development area has good test suites, you are encouraged to use a trait
to indicate which items they test as we have done here using the tester trait. This enables you to run the test suites of
items in your dependency chain. This can give you significant assurance that everything you depend on is working the
way it is supposed to be each time you start a development or debugging session.

Telling Abuild What to Build

54

9.7.4. Building Reverse Dependencies
Suppose you have made a modification to a particular build item, and you want to make sure the modification doesn't
break anyone who depends on that build item, whether the dependent item is in the modified item's tree or not. In order
to do this, you can specify the --with-rdeps flag when building the modified item. This will cause abuild to add all
of that item's reverse dependencies to the build set. For example, this is the output of running abuild --with-rdeps in
the general/reference/common/lib2/src directory:

reference-common-lib2-rdeps.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): no-op
abuild: common-lib3.src (abuild-<native>): no-op
abuild: common-lib2.src (abuild-<native>): no-op
abuild: common-lib2.test (abuild-<native>): no-op
abuild: common-lib3.test (abuild-<native>): no-op
abuild: project-lib.src (abuild-<native>): no-op
abuild: project-main.src (abuild-<native>): no-op
abuild: derived-main.src (abuild-<native>): no-op
abuild: build complete

This includes all direct and indirect reverse dependencies of common-lib2.src. If you really want to be make sure that
everything that is related to this build item by dependency in any way is rebuilt, you can use the --repeat-expansion
option as well. This will repeat the reverse dependency expansion after adding the other dependencies of your reverse
dependencies, and will continue repeating the expansion until no more items are added. If we run abuild --with-rdeps
--repeat-expansion no-op from here, we get this output:

reference-common-lib2-rdeps-repeated.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): no-op
abuild: common-lib1.test (abuild-<native>): no-op
abuild: common-lib3.src (abuild-<native>): no-op
abuild: common-lib2.src (abuild-<native>): no-op
abuild: common-lib2.test (abuild-<native>): no-op
abuild: common-lib3.test (abuild-<native>): no-op
abuild: project-lib.src (abuild-<native>): no-op
abuild: project-lib.test (abuild-<native>): no-op
abuild: project-main.src (abuild-<native>): no-op
abuild: derived-main.src (abuild-<native>): no-op
abuild: build complete

Observe the addition of common-lib1.test and project-lib.test, which are reverse dependencies of libraries added to
satisfy the dependencies of some of common-lib2's dependencies! If that seems confusing, then you probably don't
need to worry about ever using --repeat-expansion! Using --repeat-expansion with --with-rdeps will usually a lot
of build items to the build set. In this example, it actually adds every build item in the forest to the build set. The
only build items that would not be added would be completely independent sets of build items that happen to exist
in the same forest.

9.7.5. Derived Project Example
Finally, we return to our derived project build tree in reference/derived. This build tree declares project as a tree de-
pendency. As pointed out before, although derived does not declare common as a tree dependency, it can still use build

Telling Abuild What to Build

55

items in common because tree dependencies are transitive. If we run abuild --build=desc check from reference/de-
rived, we will see all our dependencies in common and project being built (though all are up to date at this point)
before our own test suite is run, and we will also see that all the items in common build first, followed by the items in
project, finally followed by the items in derived. This is the case even though they are not all descendants of the current
directory. This again illustrates how abuild adds additional items to the build set as required to satisfy dependencies:

reference-derived-check.out

abuild: build starting
abuild: common-lib1.src (abuild-<native>): all
abuild: common-lib3.src (abuild-<native>): all
abuild: common-lib2.src (abuild-<native>): all
abuild: project-lib.src (abuild-<native>): all
abuild: derived-main.src (abuild-<native>): check
make: Entering directory `--topdir--/general/reference/derived/main/src/\
\abuild-<native>'
Compiling ../main.cpp as C++
Creating main executable

STARTING TESTS on ---timestamp---

Running ../qtest/main.test
main 1 (testing derived-main) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/reference/derived/main/src/a\
\build-<native>'
abuild: build complete

We can also observe that we do not see this behavior with the special clean target. Both abuild --clean=desc and
abuild --clean=local produce this output when run from reference/derived:

reference-derived-clean-local.out

abuild: cleaning derived-main in main
abuild: cleaning derived-main.src in main/src

As another demonstration of the transitive nature of tree dependencies, run abuild --clean=all from the root of the
derived build tree. That generates this output:

Telling Abuild What to Build

56

reference-derived-clean.out

abuild: cleaning common-lib1 in ../common/lib1
abuild: cleaning common-lib1.src in ../common/lib1/src
abuild: cleaning common-lib1.test in ../common/lib1/test
abuild: cleaning common-lib2 in ../common/lib2
abuild: cleaning common-lib2.src in ../common/lib2/src
abuild: cleaning common-lib2.test in ../common/lib2/test
abuild: cleaning common-lib3 in ../common/lib3
abuild: cleaning common-lib3.src in ../common/lib3/src
abuild: cleaning common-lib3.test in ../common/lib3/test
abuild: cleaning derived-main in main
abuild: cleaning derived-main.src in main/src
abuild: cleaning project-lib in ../project/lib
abuild: cleaning project-lib.src in ../project/lib/src
abuild: cleaning project-lib.test in ../project/lib/test
abuild: cleaning project-main in ../project/main
abuild: cleaning project-main.src in ../project/main/src

Here are a few things to notice:

• We clean all build items in common and project as well as in derived.

• Even build items that don't contain build files are visited.

• Build items are cleaned in an order that completely disregards any dependencies that may exist among them.

57

Chapter 10. Integration with Automated
Test Frameworks
Abuild is integrated with two automated test frameworks: QTest, and JUnit. Additional integrations can be performed
with plugins or build item rules or hooks.

10.1. Test Targets
Abuild defines three built-in targets for running test suites: check, test, and test-only. The check and test targets are
synonyms. Both targets first ensure that a build item is built (by depending on the all target) and then run the build
item's test suites, if any. The test-only target also runs a build item's test suite, but it does not depend on all. This
means that it will almost certainly fail when run on a clean build tree. The test-only target is useful for times when
you know that a build item is already built and you want to run the test suite on what is there now. One case in which
you might want to do this would be if you had just started editing some source files and decided you wanted to rerun
the test suite on the existing executables before rebuilding them. Another case in which this could be useful is if you
had just built a build tree and then wanted to immediately go back and run all the test suites without having to pay the
time penalty of checking to make sure each build is up to date. In this case, you could run abuild --build=all test-only
immediately after the build was completed. Such a usage style might be appropriate for autobuilders or other systems
that build and test a build tree in a controlled environment.

10.2. Integration with QTest
Abuild is integrated with the QTest [http://qtest.qbilt.org] test framework. The QTest framework is a perl-based test
framework intended to support a design for testability testing mentality. Abuild's own test suite is implemented using
QTest. When using either the make or the Groovy backends, if a directory called qtest exists, then the test and check
targets will invoke qtest-driver to run qtest-based test suites. If a single file with the .testcov extension exists in the
build item directory, abuild will invoke qtest-driver so that it can find the test coverage file and activate test coverage
support. Note that abuild runs qtest-driver from the output directory, so the coverage output files as well as qtest.log
and qtest-results.xml will appear in that directory. If you wish to have a qtest-based test suite be runnable on multiple
platforms simultaneously, it's best to avoid creating temporary files in the qtest directory. If you wish to use the abuild
output directory for your temporary files, you can retrieve the full path to this directory by calling the get_start_dir
method of the qtest TestDriver object.

In order to use test coverage, you must add source files to the TC_SRCS variable in your Abuild.mk or Abuild.groovy
file. Abuild automatically exports this into the environment. If you wish to specify a specific set of tests to run using
the TESTS environment variable, you can pass it to abuild on the command line as a variable definition (as in abuild
check TESTS=some-test), and abuild will automatically export it to the environment for qtest.

10.3. Integration with JUnit
When performing ant-based builds using the Groovy framework, if the java.junitTestsuite property is set to the
name of a class, then the test and check targets will attempt to run a JUnit-based test suite. You can also set
java.junitBatchIncludes to a pattern that matches a list of class files, in which case JUnit tests will be run from all
matching classes. JUnit is not bundled with abuild, so it is the responsibility of the build tree maintainer to sup-
ply the required JUnit JARs to abuild. The easiest way to do this is to create a plugin that adds the JUnit JARs to
abuild.classpath.external in a plugin.interface file. (For more details on plugins, please see Chapter 29, Enhancing
Abuild with Plugins, page 185.) You can also copy the JAR file for a suitable version of JUnit into either ant's or
abuild's lib directory, as any JAR files in those two locations are automatically added to the classpath.

http://qtest.qbilt.org
http://qtest.qbilt.org

Integration with Auto-
mated Test Frameworks

58

10.4. Integration with Custom Test Frameworks
Adding support for your additional test frameworks is straightforward and can be done by creating a plugin that
adds the appropriate code to the appropriate targets. For make-based items, you must make sure that your tests are
run by the check, test, and test-only targets. You also must ensure that your check and test targets depend on all
and that your test-only target does not depend on all. For Groovy-based items, you must make sure that your tests
are run by the test-only target, and abuild will take care of making sure it is run by the test and check targets. For
details on plugins, see Chapter 29, Enhancing Abuild with Plugins, page 185. For details on writing make rules, see
Section 30.2, “Guidelines for Make Rule Authors”, page 205. For details on writing rules for the Groovy backend,
see Section 30.3, “Guidelines for Groovy Target Authors”, page 206.

59

Chapter 11. Backing Areas
 In a large development environment, it is very common for a developer to have a local work area that contains only
the parts of the system that he or she is actually working on. Any additional parts of the software that are required
in order to satisfy dependencies would be resolved through some kind of outside, read-only reference area. Abuild
provides this functionality through the use of backing areas.

11.1. Setting Up Backing Areas
Backing areas operate at the build forest level. Any build forest can act as a backing area. If abuild needs to reference
a build item that is found in the local forest, it will use that copy of the build item. If abuild can't find an item in the
local forest, it will use the backing area to resolve that build item. Since abuild never attempts to build or otherwise
modify an item in a backing area, backing areas must always be fully built on all platforms for which they will be
used as backing areas. (For additional details on platforms, please see Chapter 5, Target Types, Platform Types, and
Platforms, page 24.)

A build forest may declare multiple backing areas. To specify the location of your backing areas, create a file called
Abuild.backing in the root directory of your build forest. As with the Abuild.conf file, the Abuild.backing file consists of
colon-separated key/value pairs. The backing-areas key is followed by a space-separated list of paths to your backing
areas. Backing area paths may be specified as either absolute or relative paths. The path you declare as a backing area
may point anywhere into the forest that you wish to use as the backing area. It doesn't have to point to the root of the
forest, and it doesn't have to point to a place in the forest that corresponds to the root of your forest.

When one forest declares another forest as a backing area, we say that the forest backs to its backing area. Creation
and maintenance of backing areas is generally a function performed by the people who are in charge of maintaining
the overall software baselines. Most developers will just set up their backing areas according to whatever instructions
they are given. Having an external tool to create your Abuild.backing file is also reasonable. Note that Abuild.backing
files should not generally be controlled in a version control system since they are a property of the developer's work
area rather than of the software baseline. If they are controlled, they should generally not be visible outside of the
developer's work area.

Note

Changing backing area configuration should generally be followed by a clean build. This is also true when
a build item is removed from a local build tree and therefore causes the build item with that name to resolve
to the copy in backing area. The reason is that changing the location of a build item changes the actual files
on which the build target depends. If those dependencies are older than the last build time, even if they were
newer than the files they replaced, make and ant will not notice because they use modification time-based
dependencies. In other words, any operation that can replace one file with another file in such a way that the
new file is not more recent than the last build should be followed by a clean build.

11.2. Resolving Build Items to Backing Areas
In this section, we will discuss backing areas from a functionality standpoint. This section presents a somewhat sim-
plified view of how backing areas actually work, but it is good enough to cover the normal cases. To understand the
exact mechanism that abuild uses to handle backing areas with enough detail to fully understand the subtleties of how
they work, please see Section 33.3, “Traversal Details”, page 216.

The purpose of a backing area is to enable a developer to create a partially populated build tree and to fall back to a more
complete area for build items that are omitted in the local build tree. A build forest may have any number of backing

Backing Areas

60

areas, and backing areas may in turn have additional backing areas. There are a few restrictions, however. As with
item and tree dependencies, there may be no cycles among backing area relationships. Additionally, if two unrelated
backing areas supply items or trees with the same name, this creates an ambiguity, which abuild will consider an error. 1

When you have one or more backing areas, any reference to a build item or build tree that is not found locally can be
resolved in the backing area. What abuild essentially does is to maintain a list of available item and tree names, which
it internally maps to locations in the file system. When you using a backing area, abuild uses the backing areas' lookup
tables in addition to that from your own forest to resolve items and trees. 2 When a build item or tree is defined in a
backing area and is also defined in your local forest, your local forest is said to shadow the item or tree. This is not an
error. It is a normal case that happens when you are using backing areas. In most cases, your build forest will contain
items that either exist now in the backing area or will exist there at some future point. This is because the backing area
generally represents a more stable version of whatever project you are working on.

Note that since abuild refers to build items and trees by name and not by path, there are no restrictions about the
location of build items in the local forest relative to where they appear in the backing area. This makes it possible for
you to reorganize the build items or even the build trees in your local area without having to simultaneously change
the backing area. There is only way in which use of backing areas affects how abuild resolves paths: if a directory
named in a child-dirs key in some Abuild.conf does not exist and the forest has a backing area, abuild will ignore the
non-existence of the child directory. (If you run with --verbose, it will mention that it is ignoring the directory, but
otherwise, you won't be bothered with this detail.) This enables you to create sparsely populated build items without
having to edit Abuild.conf files of the parents of the directories you have chosen to omit.

If this seems confusing, the best way to think about it is in terms of how this all interacts with a version control system.
Typically, there is some master copy of the source code of a project in a version control system. There may be some
stable trunk or branch in the version control system that is expected to be self-contained and operational. This is what
would typically be checked out into a forest that would be fully built and used by others as a backing area. Then,
individual developers would just check out the pieces of the system that they are working on, and set their backing
area to point to the stable area. Since their checkouts would be sparse, there may be child directories that don't exist,
but it wouldn't matter; once they check in their changes and the stable area from which the backing area is created
gets updated, everything should be normal.

One side effect of this is that if you remove the directory containing a build item or tree from your local forest while
using a backing area that still contains that item or tree, the thing you removed doesn't really go away from abuild's
perspective. Instead, it just “moves” from the local build tree to the backing area. If it is actually your intention to
remove the build item so that its name is not known to other build items in your build tree, you can do this by adding
the name of the build item to the deleted-items key or the build tree to the deleted-trees key of your Abuild.backing
file. This effectively blocks abuild from resolving items or trees with those names from the backing area. Most users
will probably never use this feature and don't even need to know it exists, but it can be very useful under certain
circumstances. When you tell abuild to ignore a tree in this way, it actually blocks abuild from seeing any items defined
in the deleted tree. If you wanted to, you could create a new tree locally with the same name as the deleted tree, and
the new tree and the old tree would be completely separate from each other. We present an example that illustrates the
use of the deleted-item key in Section 11.5, “Deleted Build Item”, page 65.

11.3. Integrity Checks
In plain English, abuild guarantees that if A depends on B and B depends on C, A and B see the same copy of C. To
be more precise, abuild checks to make sure that no build item in a backing area references as a dependency or plugin

1 What do we mean by “unrelated” backing areas? If your build forest declares A and B to be backing areas and A backs to B, abuild will notice
this relationship and will ignore your mention of B as a backing area. You will still inherit items from B, but you will do so through A instead of
getting them directly. Abuild doesn't consider this to be an error or even a warning since, for all you know, A and B may be independent, and A
may be using B on a temporary or experimental basis. However, if you really want to know, abuild will tell you that it is ignoring B when you
run it with the --verbose flag.
2 The actual implementation differs from this description, but the effect is the same. For the real story, see Section 33.3, “Traversal Details”, page
216.

Backing Areas

61

an item that is shadowed in the local forest. (Plugins are covered in Chapter 29, Enhancing Abuild with Plugins, page
185.)

We illustrate this in Figure 11.1, “Shadowed Dependency”, page 61. Suppose that build items A, B, and C are
defined in build tree T2 and that A depends on B and B depends on C. Now suppose you have a local build tree
called T1 that has T2 as its backing area, and that you have build items A and C copied locally into T1, but that B
is resolved in the backing area.

Figure 11.1. Shadowed Dependency

A in /T1 sees B in /T2 and C in /T1, but B in /T2 sees C in /T2. This means A in /T1 builds with two different copies of C.

If you were to attempt to build A, A would refer to files in B, which comes from a backing area. B would therefore
already be built, and it would have been built with the copy of C from the backing area. A, on the other hand, would
see C in the local build tree. That means that A is indirectly using two different copies of C. Depending on what
changes were made to C in the local build tree, this would likely cause the build of A to be unreproducible at best and

Backing Areas

62

completely broken at worst. The situation of B coming from a backing area and depending on C, which is shadowed
locally, is what we mean when we say that B has shadowed dependencies. If you attempt to build in this situation,
abuild will provide a detailed error message telling you which build items are shadowed and which other build items
depend on them. One way to resolve this would be to copy the shadowed build items into your local build tree. In
this case, that would mean copying B into T1. Another way to resolve it would be to remove C from your local area
and allow that to be resolved in the backing area as well. This solution would obviously only be suitable if you were
not working on C anymore.

11.4. Task Branch Example
In this example, we'll demonstrate a task branch. Suppose our task branch makes changes to project but not to common
or derived. We can set up a new build forest in which to do our work. We would populate this build forest with whatever
parts of project we wanted to modify. We have set up this forest in doc/example/general/task. Additionally, we have
set this forest's backing area to ../reference so that it would resolve any missing build items or trees to that location:

general/task/Abuild.backing

backing-areas: ../reference

Note that, although we used a relative path for our backing area in this example, we would ordinarily set our backing
area to an absolute path. We use a relative path here only so that the examples can remain independent of the location
of doc/example. Since we are not making modifications to any build items in common or derived, we don't have to
include those build trees in our task branch. Note that our forest root Abuild.conf still lists common and derived as
children, since it is just a copy of the root Abuild.conf from reference:

general/task/Abuild.conf

child-dirs: common project derived

Since this forest has a backing area, abuild ignores the fact that the common and derived directories do not exist. For
a diagram of the task branch build trees, see Figure 11.2, “Build Trees in general/task”, page 63.

Backing Areas

63

Figure 11.2. Build Trees in general/task

The derived build tree declares a tree dependency on the project build tree. The project build tree declares a tree
dependency on the common build tree. Since the common and derived build trees are not shadowed in the task branch,
those trees are resolved in the backing area, reference, instead.

As always, for this example to work properly, our backing area must be fully built. If you are following along, to make
sure this is the case, you should run abuild --build=all in reference/derived. Next run abuild --build=deptrees no-
op in task/project. This generates the following output:

task-project-no-op.out

abuild: build starting
abuild: project-lib.src (abuild-<native>): no-op
abuild: project-lib.test (abuild-<native>): no-op
abuild: project-main.src (abuild-<native>): no-op
abuild: build complete

Backing Areas

64

This includes only items in our task branch. No items in our backing area are included because abuild never attempts
to build or modify build items in backing areas.

If you study include/ProjectLib.hpp and src/ProjectLib.cpp in task/project/lib in comparison to their counterparts in
reference/project/lib, you'll notice that the only change we made in this task branch is the addition of an optional
parameter to ProjectLib's constructor. We also updated the test suite to pass a different argument to ProjectLib.
This new value comes from a new build item we added: project-lib.extra. To add the new build item, we created
task/project/lib/extra/Abuild.conf: and also added the extra directory in task/project/lib/Abuild.conf:

general/task/project/lib/extra/Abuild.conf

name: project-lib.extra
platform-types: native

general/task/project/lib/Abuild.conf

name: project-lib
child-dirs: src test extra
deps: project-lib.src

We didn't modify anything under task/project/main at all, but we included it in our task branch so we could run its
test suite. Remember that abuild won't try to build the copy of project-main there, and even if it did, that copy of
project-main would not see our local copy of project-lib: it would see the copy in its own local build tree, which we
have shadowed. This is an example of a shadowed dependency as described in Section 11.3, “Integrity Checks”, page
60. This is the output we see when running abuild --build=deptrees check from task/project:

task-project-check.out

abuild: build starting
abuild: project-lib.src (abuild-<native>): check
make: Entering directory `--topdir--/general/task/project/lib/src/abuild\
\-<native>'
Compiling ../ProjectLib.cpp as C++
Creating project-lib library
make: Leaving directory `--topdir--/general/task/project/lib/src/abuild-\
\<native>'
abuild: project-lib.test (abuild-<native>): check
make: Entering directory `--topdir--/general/task/project/lib/test/abuil\
\d-<native>'
Compiling ../main.cpp as C++
Creating lib_test executable

STARTING TESTS on ---timestamp---

Running ../qtest/lib.test
lib 1 (test lib class) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Backing Areas

65

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/task/project/lib/test/abuild\
\-<native>'
abuild: project-main.src (abuild-<native>): check
make: Entering directory `--topdir--/general/task/project/main/src/abuil\
\d-<native>'
Compiling ../main.cpp as C++
Creating main executable

STARTING TESTS on ---timestamp---

Running ../qtest/main.test
main 1 (testing project-main) ... PASSED

Overall test suite ... PASSED

TESTS COMPLETE. Summary:

Total tests: 1
Passes: 1
Failures: 0
Unexpected Passes: 0
Expected Failures: 0
Missing Tests: 0
Extra Tests: 0

make: Leaving directory `--topdir--/general/task/project/main/src/abuild\
\-<native>'
abuild: build complete

As with the no-op build, we only see output relating to local build items, not to build items in our backing areas as
they are assumed to be already built.

11.5. Deleted Build Item
Here we present a new forest located under doc/example/general/user. This forest backs to the task forest from the
previous example. We will use this forest to illustrate the use of the deleted-item key in the Abuild.backing.

Suppose we have a user who is working on changes that are related in some way to the task branch. We want to create
a user branch that backs to the task branch. Our user branch contains all three trees: common, project, and derived.
We will ignore derived for the moment and focus only common and project. For a diagram of the user build trees, see
Figure 11.3, “Build Trees in general/user”, page 66.

Backing Areas

66

Figure 11.3. Build Trees in general/user

The user forest backs to the task forest. All trees are present, so they all resolve locally.

Observe that common contains only the lib1 directory and that project contains only the lib directory. We make a
gratuitous change to a source file in common-lib1.src just as another example of shadowing a build item from our
backing area.

In project, we have made changes to project-lib to make use of private interfaces, which we discuss in Chapter 23,
Interface Flags, page 150 and will ignore for the moment. We have also deleted the new build item project-
lib.extra that we added in the task branch. To delete the build item, we removed the extra directory from project/lib
and from the child-dirs key in project/lib/Abuild.conf:

general/user/project/lib/Abuild.conf

name: project-lib
child-dirs: src test
deps: project-lib.src

That in itself was not sufficient since, even though the extra directory is no longer present in the child-dirs key of
project-lib's Abuild.conf, we would just inherit project-lib.extra from our backing area. To really delete the build
item, we also had to add a deleted-item key in user/Abuild.backing:

Backing Areas

67

general/user/Abuild.backing

backing-areas: ../task
deleted-items: project-lib.extra

This has effectively prevented abuild from looking for project-lib.extra in the backing area. If any build item in the
local tree references project-lib.extra, an error will be reported because abuild now considers that to be an unknown
build item.

Although we don't present any examples of using deleted-tree, it works in a very similar fashion. Ordinarily, any build
tree you do not have locally will be inherited from the backing area. If your intention is to change the code so that it
no longer uses a particular tree, and you want to make sure that that tree is not available at all in your local area, you
can delete it using deleted-tree. However, if you simply remove it from all your tree-deps directives, there is no risk
of your using its items by accident. As such, most people will probably never need to use the deleted-tree feature.

68

Chapter 12. Explicit Read-Only and
Read/Write Paths
One of the significant defining features of abuild is that it will automatically build items to satisfy dependencies. Most
of the time, this is useful and helpful behavior, but there are certain cases in which it can actually get in the way.
For example, you may have one build tree that provides common code, which you may want to build manually in
advance of building everything else. Then you may want to kick off parallel builds of separate dependent trees on
multiple platforms simultaneously and be able to be sure that they won't step on each other by all trying to build the
shared tree at the same time. In cases like this, you might want to tell abuild to assume the shared tree is built and
to treat it as read-only.

To support this and similar scenarios, abuild allows you to explicitly designate specific paths as read-only on the
command line. 1 Most of the time, specifying a read-only path is as simple as invoking abuild with the --ro-
path=directory option for the directory you want to treat as read-only. There may cases, however, where you want
a much more specific degree of control. When you need it, it's there. Here we describe the exact behavior of the --
ro-path and --rw-path options.

• Both --ro-path=dir and --rw-path=dir may appear multiple times.

• If neither option appears, all build items are writable. (Except those in backing areas; backing areas are always
read-only.)

• If only --ro-path appears, build items are writable by default, and only those located under any specified read-only
path are read-only.

• If only --rw-path appears, build items are read-only by default, and only build items located under a directory
specified with --rw-path are writable.

• If both --ro-path and --rw-path are specified:

• Either every --ro-path must be a path under some --rw-path, in which case build items are read-only by default,

• or every --rw-path must be path under some --ro-path, in which case build items are writable by default.
In this case, the writability of items is determined by the lowest directory actually specified (start with the item's
directory and walk up the file system until you find a directory explicitly mentioned), using the default of none
is found.

This seems more complicated than it really is, so let's look at a simple example. Suppose you have the directory
structure a/b/c/d. If you specified --ro-path=a/b --rw-path=a/b/c, all read/write paths are under some read only path,
so build items are writable by default. Everything under a/b/c is writable, and everything under a/b that is not under a/
b/c is read-only. Use of --ro-path and --rw-path together basically lets you make a particular area read only and then
give exceptions. Likewise, you can make everything read-only by default, and then make only a specific directory
read-write, again make exceptions to that.

These rules make it possible to unambiguously create any combination of read-only/writable build items without
having the order of the arguments matter. If you're sufficiently determined, you can use this mechanism to precisely
control which items should be read-only and which should be writable.

1 In abuild 1.0, we had a different mechanism for addressing this need: read-only externals. There were several problems with read-only externals,
though: they were ambiguous since whether a tree was read-only or not would depend on how abuild came to know about it through other trees,
they were not granular as you could only control this at the tree level, and they were inflexible: you might set them up to address the needs of a
particular build, and then have them get in the way of other builds. When externals were replaced by named trees and tree dependencies, we dropped
support for read-only externals and replaced them with read-only paths, which are much more flexible and which make the decision a function of
the specific build rather than of the build trees, as it always should have been.

Explicit Read-Only
and Read/Write Paths

69

Paths specified may be absolute or relative. Relative paths are resolved relative to the starting directory of abuild. They
are converted internally to absolute paths after any -C start-directory option is evaluated.

70

Chapter 13. Command-Line Reference
This chapter presents full detail about how to invoke abuild from the command line. Some of functionality described
here is explained in the chapters of Part III, “Advanced Functionality”, page 78.

13.1. Basic Invocation
When running abuild, the basic invocation syntax is as follows:

abuild [options] [definitions] [targets]

Options, definitions, and targets may appear in any order. Any argument that starts with a dash (“-”) is treated as an
option. Any option of the form VAR=value is considered to be a definition. Anything else is considered to be a target.

13.2. Variable Definitions
Arguments of the form VAR=value are variable or parameter definitions. Variables defined in this way are made
available to all backends. These can be used to override the value of interface variables or variables set in backend
build files.

For the make backend, these variable definitions are just passed along to make.

For the Groovy backend, these variables are stored in a manner such that abuild.resolve will give them precedence
over normal parameters or interface variables. They are also defined as properties in the ant project.

For the deprecated xml-based ant framework, these definitions are made available as ant properties that are defined
prior to reading any generated or user-provided files.

13.3. Informational Options
These options print information and exit without building anything.

--dump-build-graph
Dump to standard output the complete build graph consisting of items and platforms. This is primarily useful for
debugging abuild or diagnosing unusual problems relating to which items are built in which order. The build graph
output data conforms to a DTD which can be found in doc/build_graph.dtd in the abuild distribution. The contents
of the DTD can also be found in Appendix H, --dump-build-graph Format, page 305. Although nothing is
built when this option is specified, abuild still performs complete validation including reading of all the interface
files. The build graph is discussed in Section 33.6, “Construction of the Build Graph”, page 218. For additional
ways to use the build graph output, see also Chapter 32, Sample XSL-T Scripts, page 214.

--dump-data
Dump to standard output all information computed by abuild. Useful for debugging or for tools that need in-depth
information about what abuild knows. --dump-data is mutually exclusive with running any targets. If you need to
see --dump-data output and build targets at the same time, use --monitored instead (see Chapter 31, Monitored
Mode, page 212). For details about the format generated by --dump-data, please see Appendix F, --dump-
data Format, page 296. For additional ways to use the build graph output, see also Chapter 32, Sample XSL-
T Scripts, page 214.

--find item-name
Print the name of the tree that contains item item-name, and also print its location.

Command-Line Reference

71

--find=tree:tree-name
Print the location of the root build item of build tree tree-name.

--help|-H
Print a brief introduction to abuild's help system. For additional details, see Chapter 8, Help System, page 37. For
the text of all help files that are provided with abuild, see Appendix E, Online Help Files, page 270.

--list-platforms
Print the names of all object-code platforms categorized by platform type and build tree, and indicate which ones
would be built by default. Note that abuild may build on additional platforms beyond those selected by default
in order to satisfy dependencies from other items.

--list-traits
Print the names of all traits known in the local build tree, its tree dependencies, and its backing areas. This is the list
of traits that are available for use on the command line with the --only-with-traits and --related-by-traits options.

--print-abuild-top
Print the path to the top of abuild's installation.

-V|--version
Print the version number of abuild.

13.4. Control Options
These options change some aspect of how abuild starts or runs.

-C start-directory
Change directories to the given directory before building.

--clean-platforms=pattern
Specify a pattern that restricts which platform directories are removed by any abuild clean operation. This argu-
ment may be repeated any number of times. The pattern given can be any valid shell-style wild-card expres-
sion. Any output directory belonging to any pattern that matches any of the given clean patterns will be removed.
All other output directories will be left alone. This can be useful for removing only output directories for platforms
we no longer care about or for other selective cleanup operations.

--compat-level=version
Set abuild's compatibility level to the specified version, which may be either 1.0 or 1.1. You may also place
the compatibility level version in the ABUILD_COMPAT_LEVEL environment variable. By default, early pre-
release versions of abuild attempt to detect deprecated constructs from older versions and issue warnings about
their use, while final versions operate with deprecation support disabled by default. Setting the compatibility level
to a given version causes abuild to not recognize constructs deprecated by that version at all. For example, in
compatibility level 1.1, use of the this key in Abuild.conf would result in an error about an unknown key rather
than being treated as if it were name, and the make variable BUILD_ITEM_RULES would be treated like any
ordinary variable and would not influence the build in any way. See also --deprecation-is-error.

--deprecation-is-error
Ordinarily, abuild detects deprecated constructs, issues warnings about them, and continues operating by mapping
deprecated constructs into their intended replacements. When this option is specified, any use of deprecated con-
structs are detected and reported as errors instead of warnings. Note that this is subtly different from specifying
--compat-level with the current major and minor versions of abuild. For example, if --deprecation-is-error is
specified, use of the make variable BUILD_ITEM_RULES will result in an error message, while if --compat-lev-
el=1.1 is specified, the variable will simply be ignored. A good upgrade strategy is to use --deprecation-is-error
to first test to make sure you've successfully eliminated all deprecated constructs, and then to use --compat-lev-

Command-Line Reference

72

el (or to set the ABUILD_COMPAT_LEVEL environment variable) to turn off abuild's backward compatibility
support, if desired.

-e | --emacs
Tell ant to run in emacs mode by passing the -e flag to it and also setting the property abuild.private.emacs-mode.
Ant targets can use this information to pass to programs whose output may need to be dependent upon whether
or not emacs mode is in effect.

--find-conf
Locates the first directory at or above the current directory that contains an Abuild.conf file, and changes directories
to that location before building.

--full-integrity
Performs abuild's integrity checks for all items in the local tree, tree dependencies, and backing areas. Ordinarily,
abuild performs its integrity check only for items that are being built in the current build. The --full-integrity flag
would generally be useful only for people who are maintaining backing areas that are used by other people. For
detailed information about abuild's integrity checks, please see Section 11.3, “Integrity Checks”, page 60.

-jn| --jobs=n
Build up to n build items in parallel by invoking up to n simultaneous instances of the backend. Does not cause
the backend to run multiple jobs in parallel. See also --make-jobs.

--jvm-append-args ... --end-jvm-args
Appends any arguments between --jvm-append-args and --end-jvm-args to the list of extra arguments that abuild
passes to the JVM when it invokes the java builder backend. This option is intended for use in debugging abuild.
If you have to use it to make your build work, please report this as a bug.

--jvm-replace-args ... --end-jvm-args
Replaces abuild's internal list of extra JVM arguments with any arguments between --jvm-replace-args and --
end-jvm-args. This option is intended for use in debugging abuild. If you have to use it to make your build work,
please report this as a bug.

-k | --keep-going
Don't stop the build after the first failed build item, but instead continue building additional build items that don't
depend on any failed items. Also tells backend to continue after its first failure. Even with -k, abuild will never
try to build an item if any of its dependencies failed. This behavior may be changed by also specifying --no-dep-
failures.

--make
Terminate argument parsing and pass all remaining arguments to make. Intended primarily for debugging.

--make-jobs[=n]
Allow make to run up to n jobs in parallel. Omit n to allow make to run as many jobs as it wants. Be aware that
if this option is used in combination with --jobs, the total number of threads could potentially be the product of
the two numerical arguments.

Note that certain types of make rules and certain may cause problems for parallel builds. For example, if your
build involves invoking a compiler or other tool that writes poorly named temporary files, it's possible that two
simultaneous invocations of that tool may interfere with each other. Starting with abuild 1.1, it is possible to place
attributes: serial in a make-based build item's Abuild.conf file to prevent --make-jobs from applying to that
specific item. This will force serial compilation of items that you know don't build properly in parallel. This can be
useful for build items that use the autoconf rules, which are known to sometimes cause trouble for parallel builds.

--monitored
Run in monitored mode. For details, see Chapter 31, Monitored Mode, page 212.

Command-Line Reference

73

-n
Have the backend print what it would do without actually doing it.

--no-dep-failures
Must be combined with -k. By default, abuild does not attempt to build any items whose dependencies have failed
even if -k is specified. When the --no-dep-failures option is specified along with -k, abuild will attempt to build
items even if one or more of their dependencies have failed. Using -k and --no-dep-failures together enables
abuild to attempt to build everything that the backends will allow. Note that cascading errors (i.e., errors resulting
from earlier errors) are likely when this option is used.

--platform-selector=selector | -p selector
Specify a platform selector. This argument may be repeated any number of times. Later instances supersede earlier
ones when they specify selection criteria for the same platform type. When two selectors refer to different platform
types, both selectors are used. Platform selectors may also be given in the ABUILD_PLATFORM_SELECTORS
environment variable. For details on platform selectors, see Section 24.1, “Platform Selection”, page 155.

--ro-path=path
Indicate that path is to be treated as read-only by abuild during build or clean operations. For details on using
explicitly read-only and read/write paths, see Chapter 12, Explicit Read-Only and Read/Write Paths, page 68.

--rw-path=path
Indicate that path is to be treated as read-write by abuild during build or clean operations. For details on using
explicitly read-only and read/write paths, see Chapter 12, Explicit Read-Only and Read/Write Paths, page 68.

13.5. Output Options
These options change the type of output that abuild generates.

--buffered-output
Cause abuild to buffer the output produced by each individual item's build and display it contiguously after that
build completes. For additional details, see Chapter 20, Controlling and Processing Abuild's Output, page 119.

--error-prefix=prefix
Prepend the given prefix string to every error message generated by abuild and to every line written to standard
error by any program abuild invokes. See also --output-prefix. For additional details, see Chapter 20, Controlling
and Processing Abuild's Output, page 119.

--interleaved-output
In a multithreaded build, cause abuild to prepend each line of output (normal or error) with an indicator of the build
item that was responsible for producing it. Starting in abuild version 1.1.3, this is the default for multithreaded
builds. For additional details, see Chapter 20, Controlling and Processing Abuild's Output, page 119.

--output-prefix=prefix
Prepend the given prefix string to every line of non-error output generated by abuild and to every line written to
standard output by any program abuild invokes. See also --error-prefix. For additional details, see Chapter 20,
Controlling and Processing Abuild's Output, page 119.

--raw-output
Prevent abuild from doing any kind of capture or filtering of the output produced by any item's build. This op-
tion also makes abuild's standard input available to any program that abuild invokes. This is the default for sin-
gle-threaded builds and was the behavior for all builds prior to abuild version 1.1.3. For additional details, see
Chapter 20, Controlling and Processing Abuild's Output, page 119.

--silent
Suppress most non-error output. Also tells the backend build tools to generate less output.

Command-Line Reference

74

--verbose
Generate more verbose output. Also tells the backend build tools to generate more output.

13.6. Build Options
These options tell abuild what to build and what targets to apply to items being built.

--apply-targets-to-deps
Ordinarily, any explicitly specified targets are applied only to items that were directly selected for inclusion in
the build set. With this flag, they are applied to all items being built, including recursively expanded dependen-
cies. When used with a clean set, this option causes the clean set to expanded to include dependencies, which is
otherwise not done. For detailed information about target selection, please see Chapter 9, Telling Abuild What
to Build, page 38.

--build=set | -b set
Specify which build items should be built. The default is to use the build set current, which builds the current
item and all of its dependencies. For additional details including a list of valid values for set, see Chapter 9,
Telling Abuild What to Build, page 38.

--clean=set | -c set
Run abuild clean in all items in the build set. The same build sets are defined as with the --build option. Unlike
build sets, clean sets are not expanded to include dependencies (unless --apply-targets-to-deps is specified), and
build items are not cleaned in dependency order. No targets may be specified in conjunction with this option. For
additional details including a list of valid values for set, see Chapter 9, Telling Abuild What to Build, page 38.
See also the description of the --clean-platforms (in Section 13.4, “Control Options”, page 71) to learn about
restricting which platform directories are removed.

--dump-interfaces
Cause abuild to create interface dump files in the output directories of every writable build item, including those
that don't build anything. This option can be useful for tracking down problems with interface variables. For more
information, see Section 17.6, “Debugging Interface Issues”, page 94.

--no-deps
Prevent abuild from attempting to build any dependencies of the current build item before building the item itself.
The --no-deps option may not be combined with a build set.

--only-with-traits=trait[,trait,...]
Exclude from the initial build set any items that do not contain all of the named traits. As always, all dependencies
of any item in the reduced build set will remain in the build set regardless of what traits they have. If not accom-
panied by the --related-by-traits option, any explicitly named targets will be applied only to items that have all
of the named traits. Other items (those they depend on) will be built with the default all target. If accompanied
by the --related-by-traits option, the --related-by-traits option's behavior with respect to explicit targets takes
precedence. For more information about traits, see Section 9.5, “Traits”, page 42.

--related-by-traits=trait[,trait,...]
Expand the build set with items that have all of the named traits relative to any item already in the build set.
Specifying this option also causes any explicitly specified targets to be run only for those items. The default target
all is run for all other build items in the build set. For more information about traits, see Section 9.5, “Traits”, page
42. When combined with --repeat-expansion, this process is repeated until no more items are added.

--repeat-expansion
Instruct abuild to apply build set expansion based on traits (--related-by-traits) or or reverse dependencies (--
with-rdeps) repeatedly after adding dependencies of newly added items until no further expansion of the build
set results.

Command-Line Reference

75

--with-rdeps
Expand the build set by adding all reverse dependencies of any item already in the build set. As always, any
additional dependencies of newly added items are also added. When specified with --repeat-expansion, addition
of reverse dependencies is repeated (after adding additional dependencies) until no further expansion of the build
set results.

13.7. General Targets
Abuild's backends define several targets that are available for use from the command line, so you can rely on these
targets being defined. 1

all
This is the default target. It is used to build all products that are intended for use by the end user or by other
build items.

check
This target ensures that the local build item is built and then runs its automated test suite, if any. For this to do
anything, the build item must have a test suite implemented with a test framework that is integrated with abuild
or that is made available with a plugin. Abuild is integrated with QTest and, for Java-based build items, also with
JUnit. The check target is not automatically run by the default target; it must be requested specifically.

clean
This target removes any output directories that abuild thinks it created. (Output directories are discussed in Sec-
tion 5.3, “Output Directories”, page 26.) Well-behaved abuild rules, including all the rules that are a standard part
of abuild, won't create any files or directories outside of these locations. See also the description of the --clean-
platforms (in Section 13.4, “Control Options”, page 71) to learn about restricting which platform directories
are removed.

doc
This target is provided for building documentation that is extracted from source code. The doc target is not auto-
matically run by the default target; it must be requested explicitly. It depends on the all target. There is no inter-
nal support for document generation in the make backend, so this capability must be provided by a plugin. For
Groovy/ant builds, there is built-in support for javadoc, but it is minimal and will likely have to be supplement-
ed for any major documentation effort. A contributed plugins to support doxygen is available in abuild-contrib,
which is released separately from abuild.

no-op
This target does nothing other than printing the name and platform of each build item in the build set, but using
it still causes abuild to perform all the same validations it would perform if it were going to build something. The
no-op target can be used to get a complete list of all the items and platforms that would be built if building a given
build set and will also verify that there are no errors in any Abuild.conf files. Note that Abuild.interface files are
not read when invoking the no-op target.

test
This target is a synonym for check.

test-only
This target runs any automated test suites but does not first try to build. In other words, the test-only target does
not depend on the all target like the check and test targets do. This can be useful for running a test suite on a
build item without first rebuilding it or for running all the test suites on a build tree that you know is up to date
because you just built it.

1 When the Abuild-ant.xml build file is used with the deprecated xml-based ant backend, it is up to the author of the build file to provide these
targets, and all bets are off.

76

Chapter 14. Survey of Additional
Capabilities
By now, you should have a pretty good feel for what abuild can do and how to use it in several situations. The remain-
ing chapters of this document cover advanced topics and present examples for solving a wide variety of problems.
Although later chapters sometimes build on information presented in earlier chapters, many of the remaining chapters
and examples can probably be understood on their own. It should therefore be safe to focus your attention on the
material that is of interest or potential use to you.

Part III, “Advanced Functionality”, page 78 opens with detailed descriptions of abuild's configuration files and
interface subsystem. It then continues with explorations of several specific problems. We present here a brief list of
problems that are addressed in the remaining chapters:

Controlling and Processing Abuild's Output
Abuild's output is primary intended to be useful to human readers, but there are a number of capabilities (introduced
in version 1.1.3) that can make it easier to programmatically parse abuild's output or to help make it easier to look
at the output of a large build. In Chapter 20, Controlling and Processing Abuild's Output, page 119, we discuss
ways to distinguish normal output from error messages and ways to clearly associate each line of abuild's output
with the build item whose build produced it.

Shared Libraries
Abuild includes support for creating shared libraries on UNIX platforms and DLLs on Windows platforms. In
Chapter 21, Shared Libraries, page 123, we describe the process and explore some of the other concerns you
have to consider when using shared libraries with abuild.

Build Item Rules and Code Generators
Abuild allows build items to supply custom rules, most often for supporting automatic code generation. In Chap-
ter 22, Build Item Rules and Automatically Generated Code , page 129, we discuss code generators for make-
based and Groovy-based builds.

Private Interfaces
In general, abuild is designed such that all build item interfaces automatically inherit through the dependency
chain. There are some cases when it may be desirable for a build item to have an expanded interface that is
available to certain build items upon request. In Chapter 23, Interface Flags, page 150, we introduce a feature
of abuild designed to solve this problem and present an example of using it to implement private interfaces.

Cross-Platform Development
Abuild's platform system is designed to make building on multiple platforms as easy as possible. If a build item
can be built on multiple platforms, abuild will generally sort out all the details of which build of one item another
item should depend on. There are times, however, when it is necessary to take control over this behavior. We
discuss this problem in Chapter 24, Cross-Platform Support, page 155.

Mixed Classification Development
We all know that security is increasingly important in the software community. In some cases, it may be necessary
to create collections of software that are only allowed to run or even exist in secure environments. In Chapter 25,
Build Item Visibility, page 166, we describe how to use abuild's build item visibility feature along with tree
dependencies to create a mixed classification development environment, and we present an example that illustrates
one implementation strategy.

Whole Library Support
Ordinarily, when an application links with a library, only functions that are actually called are linked into the
executable. On platforms that support this, abuild allows you to specify that the entire contents of a library archive

Survey of Additional Capabilities

77

should be included in an executable. In Chapter 26, Linking With Whole Libraries, page 176, we describe why
you might want to do this and how to do it.

Opaque Wrappers
Some development problems require one interface to be created that opaquely hides another interface. Since
abuild's default behavior is to make all interfaces inherit through the dependency chain, special constructs are
required to implement opaque wrappers. In Chapter 27, Opaque Wrappers, page 179, we present the mecha-
nisms required to make this work.

Optional Dependencies
The goal of loose integration between software components can often be best served by allowing different com-
ponents to make themselves known to the system at runtime. However, there are instances in which a tighter,
compile-time integration may be required with optional components. In Chapter 28, Optional Dependencies, page
181, will illustrate how abuild allows you to declare tree and item dependencies as optional and then create
code that is conditional upon whether the optional dependency is satisfied.

Plugins
There are certain tasks that go beyond simply building targets and making them available. Examples include
adding support for new compilers and performing extra validations that go beyond what can be easily expressed
using abuild's built-in mechanisms. In Chapter 29, Enhancing Abuild with Plugins, page 185, we present a
plugin framework that can be used to extend abuild in certain ways.

In addition to the above topics, we explore some details of how abuild works behind the scenes and present guidelines
for how to use abuild in the safest and most effective way. The table of contents at the beginning of Part III, “Advanced
Functionality”, page 78 includes a complete list of chapters, and each chapter starts with some introductory text
that describes the material it covers.

Part III. Advanced Functionality
In this part of the manual, we cover the remaining information about abuild's features in detail. This part contains
complete reference guides to abuild's configuration files, discussions of more advanced topics, and numerous examples
to illustrate how to solve specific build problems with abuild. By the end of this part, you should be able to use abuild
for a wide range of build problems.

79

Chapter 15. The Abuild.conf File
 The Abuild.conf file is the fundamental configuration file that describes each build item and the relationships between
build items. It contains information about dependencies, file system locations, and platform support. It explicitly does
not contain any information about how to build a particular build item or what targets are built.

15.1. Abuild.conf Syntax
Every build item must contain Abuild.conf. The Abuild.conf file is a simple text file consisting of colon-separated key/
value pairs. Blank lines and lines that start with # are ignored. Long lines may be continued to the next line by ending
them with a backslash character (\). Certain keys are permitted for some kinds of build items and not for others. For
a discussion of different types of build items, please see Section 4.5, “Special Types of Build Items”, page 21.

The following keys are supported in Abuild.conf:

attributes
This is a “catch-all” key whose value is a list of white-space separate keywords that assign certain specific at-
tributes to a build item. The following attributes are supported:

• serial: valid only for build items that are built using the make backend, where it prevents the --make-jobs
option from applying to that build item, effectively forcing it to build serially

build-also
This key contains a list of whitespace-separated build items. Whenever abuild adds a given item to a build set, it
also adds any items listed in its build-also key to the build set. No dependency relationship or any other relationship
is implied. This is useful for creating pseudo-top-level build items that serve as starting points for multiple builds.

child-dirs
This key is used to specify all subdirectories of this item that contain additional Abuild.conf files. The value is a
whitespace-separated list of relative paths, each of which must point down in the file system.

A child directory may be followed by the -optional flag, in which case abuild will not complain if the directory
doesn't exist. This can be especially useful for high-level Abuild.conf files whose children may correspond to
optional dependencies, optional build trees, or self-contained trees that may or may not be included in a particular
configuration.

If a child directory contains more than one path element, the intermediate directories may not contain their own
Abuild.conf files. (In other words, you can't skip over a directory that has an Abuild.conf file in it.)

deps
This key's value is a whitespace-separated list of the names of build items on which this build item depends. This
is the sole mechanism within abuild to specify inter-build-item dependencies. Any dependency in this list may be
optionally followed by one or more -flag=interface-flag arguments. This causes the interface-flag
interface flag to be set when this build item reads the interface of the dependency (see Chapter 23, Interface
Flags, page 150). It is also possible to specify a -platform=selector option to a dependency to specify
which of the dependency's platforms applies to this dependency (see Section 24.3, “Explicit Cross-Platform De-
pendencies”, page 158). Dependencies may be specified as optional by following the dependency name with
the -optional flag (see Chapter 28, Optional Dependencies, page 181).

description
This key can be used to add an information description to the build item. Description information is intended to be
human readable. If present, it will be included in the output to abuild --dump-data. Providing a description here

The Abuild.conf File

80

rather than just by using a comment in the Abuild.conf file can be useful to other programs that provide additional
visualization of build items. For adding information that you may wish to categorize items for build purposes, use
traits instead (see Section 9.5, “Traits”, page 42). The description field is only permitted for named build items,
though comments may appear in any Abuild.conf file.

name
This key is used to set the name of the build item. Build item names consist of period-delimited segments. Each
segment consists of one or more alphanumeric characters, dashes, or underscores. Some Abuild.conf files exist
just to connect parent directories with child directories in the file system. In those cases, the name key may be
omitted. The name key is also optional for root build items that don't build anything themselves.

platform-types
This key is used to specify which platform types a given build item is expected to work on. It includes a whites-
pace-separated list of platform types. For details about platform types, see Chapter 5, Target Types, Platform
Types, and Platforms, page 24. If a build item has a build file or an interface file, the platform-types key is
mandatory. Otherwise, it must not be present. Note that a build item may have multiple platform types, but all
platform types for a given build item must belong to the same target type.

plugins
This key is valid only in a root build item. It is used to specify the list of build items that are treated plugins by
this tree. For information about plugins, see Chapter 29, Enhancing Abuild with Plugins, page 185. A plugin
name may be followed by the option -global which makes it apply to all build trees in the forest. Use this feature
very sparingly. For details, see Section 29.2, “Global Plugins”, page 186.

supported-flags
This key contains a list of whitespace-separated flags that are supported by this build item. When a flag is listed
here, it becomes available to this item's Abuild.interface file for flag-specific variable assignments. Other items
can specify that this flag should be turned on when they depend on this item by using the -flag=interface-
flag option in their deps key. For more information, see Chapter 23, Interface Flags, page 150.

supported-traits
This key is allowed only in a root build item. It contains a list of whitespace-separated traits that are supported by
build items in the build tree. For more information about traits, see Section 9.5, “Traits”, page 42.

traits
This key contains a list of whitespace-separated traits that apply to this build item. A trait may be referent to one or
more additional build items. To name a referent build item, follow the trait with the -item=build-item option.
For more information about traits, see Section 9.5, “Traits”, page 42.

tree-deps
This key is valid only in a root build item. It contains a list of the names of trees on which this tree depends.
For information about tree dependencies, see Chapter 7, Multiple Build Trees, page 33. Tree dependencies may
be declared optional by following the name of the dependency with -optional (see Chapter 28, Optional Depen-
dencies, page 181).

tree-name
The presence of this key establish a build item as a root build item. This key's value is the name of the build
tree. Build trees must be named uniquely in a forest. Build tree names may consist of alphanumeric characters,
underscore, dash, and period. Unlike with build item names, there is no hierarchical or scoping structure implied
by any of the characters in the names of build trees.

visible-to
This key's value is an indicator of the scope at which this build item is visible. If present, it allows build items
in the named scope to access this build item directly when they would ordinarily be prevented from doing so by
normal scoping rules. For information about build item name scopes and build item visibility, see Section 6.3,

The Abuild.conf File

81

“Build Item Name Scoping”, page 28. For a discussion of the visible-to key in particular, see Chapter 25, Build
Item Visibility, page 166

Note that the child-dirs keys is the only key that deals with paths rather than names.

82

Chapter 16. The Abuild.backing File
 The Abuild.backing file may appear at the root of a build forest. It specifies the locations of one or more backing areas
and, optionally, provides a list of build items a trees that should not be inherited from the backing areas. For details
about backing areas, see Chapter 11, Backing Areas, page 59.

The syntax of the Abuild.backing file is identical to that of the Abuild.conf file: it contains a list of colon-separated
key/value pairs. Blank lines and lines beginning with the # character are ignored.

 The following keys are defined:

backing-areas
This key's value is a space-separated list of relative or absolute paths to other build forests that are to be used as
a backing area to the current forest. It is the only required key in the Abuild.backing file.

deleted-items
This key's value is a space-separated list of build items that should not be inherited from the backing area. Any
build item listed here is treated as an unknown build item in the local forest.

deleted-trees
This key's value is a space-separated list of build trees that should be inherited from the backing area. Any build
item in any build tree listed here will not be made available from the backing area, and the build tree will not be
considered a member of the local forest. Note that, unlike with deleted items, it is permissible to create a new
build tree locally with the same name as a deleted tree. The new tree is not related to the old tree in any way, and
the new tree will not inherit build items from an instance of the deleted tree in the backing areas.

83

Chapter 17. The Abuild Interface
System
 The abuild interface system is the mechanism through which abuild provides encapsulation. Its purpose is to allow
build items to provide information about the products they provide to other build items. Build items provide their
interfaces with the Abuild.interface file. This chapter describes the interface system and provides details about the
syntax and semantics of Abuild.interface and other abuild interface files.

17.1. Abuild Interface Functionality Overview
This section contains a prose description of the interface system's functionality and presents the basic syntax of
Abuild.Interface without providing all of the details. This material provides the basis for understanding how the inter-
face functionality works. In the next section, we go over the details.

The Abuild.interface file has a fairly simple syntax that supports variable declarations, variable assignments, and
conditionals. Interface files are rigorously validated. Any errors detected in an interface file are considered build
failures which, as such, will prevent abuild from attempting to build the item with the incorrect interface and any items
that depend on it. Most Abuild.interface files will just set existing variables to provide specific information about that
item's include and library information, classpath information, or whatever other standard information may be needed
depending upon the type of item it is. For casual users, a full understanding of this material is not essential, but for
anyone trying to debug interface issues or create support within abuild for more complex cases, it will be important
to understand how abuild reads Abuild.interface files.

The basic purpose of Abuild.interface is to set variables that are ultimately used by a build item to access its depen-
dencies. The basic model is that an item effectively reads the Abuild.interface files of all its dependencies in depen-
dency order. (This is not exactly what happens. For the full story, see Section 33.7, “Implementation of the Abuild
Interface System”, page 220.) As each file is read, it adds information to the lists of include paths, libraries, library
directories, compiler flags, classpath, etc. All variables referenced by Abuild.interface are global variables, even if
they are declared inside the body of a conditional, much as is the case with shell scripts or makefiles. Although this is
not literally what happens, the best way to think about how abuild reads interface files is to imagine that, for each build
item, all of the interface files for its dependencies along with its own interface file are concatenated in dependency
order and that the results of that concatenation are processed from top to bottom, skipping over any blocks inside of
false conditional statements.

Once abuild parses the Abuild.interface files of all of a build item's dependencies and that of the build item itself, the
names and values of the resulting variables are passed to the backends by writing them to the abuild dynamic output
file, which is called .ab-dynamic.mk for make-based builds and .ab-dynamic.groovy for Groovy/ant-based builds. The
dynamic output file is created in the output directory. Although users running abuild don't even have to know this
file exists, peeking at it is a useful way to see the results of parsing all the Abuild.interface files in a build item's
dependency chain.

The Abuild.interface file contains the following items:

• Comments

• Variable declarations

• Variable assignments

• After-build file specifications

• Target type restrictions

The Abuild Interface System

84

• Conditionals

Similar to make or shell script syntax, each statement is terminated by the end of the line. Whitespace characters
(spaces or tabs) are used to separate words. A backslash (\) as the last character of the line may be used to continue
long statements onto the next line of the file, in which case the newline is treated as a word delimiter like any other
whitespace. 1 Any line that starts with a # character optionally preceded by whitespace is ignored entirely. Comment
lines have no effect on line continuation. In other words, if line one ends with a continuation character and line two is
a comment, line one is continued on line three. This makes it possible to embed comments in multiline lists of values.
In this example, the value of ODDS would be one three:

ODDS = \
 one \
odd numbers only, please
 # two \
 three

Characters that have special meanings (space, comma, equal, etc.) may be quoted by preceding them by a backslash.
For consistency, a backslash followed by any character is treated as that character. This way, the semantics of backslash
quoting won't change if additional special characters are added in the future.

All variables must be declared, though most Abuild.interface files will be assigning to variables that have already
been declared in other interface files. There are no variable scoping rules: all variables are global, even if declared
inside a conditional block. Variable names may contain alphanumeric characters, dash, underscore, and period. By
convention, make-based rules use all uppercase letters in variable names. This convention also has the advantage
of avoiding potential conflict with reserved statements. Java-based rules typically use lower-case period-separated
properties. Ultimately abuild interface variables become make variables or ant properties and keys in parameter tables
for Groovy, which is the basis for these conventions. Note, however, that variables of both naming styles may be used
by either backend, and some of abuild's predefined interface variables that are available to both make and Groovy/
ant are of the all upper-case variety.

Once declared, a variable may be assigned to or referenced. A variable is referenced by enclosing its name with
parentheses and preceding it by a dollar sign (as in $(VARIABLE)), much like with standard make syntax, except that
there is no special case for single-character variable names. Other than using the backslash character to quote single
characters, there is no quoting syntax: the single and double quote characters are treated as ordinary characters with
no special meanings.

Environment variables may be referenced using the syntax $(ENV:VARIABLE). Unlike many other systems which
treat undefined environment variables as the empty string, abuild will trigger an error condition if the environ-
ment variable does not exist unless a default value is provided. A default value can be provided using the syntax
$(ENV:VARIABLE:default-value). The default-value portion of the string may not contain spaces, tabs, or paren-
theses. 2 Although it can sometimes be useful to have abuild interface files initialize interface variables from the en-
vironment, this feature should be used sparingly as it is possible to make a build become overly dependent on the
environment in this way. (Even without this feature, there are other ways to fall into this trap that are even worse.)
Note that environment variables are not abuild variables. They are expanded as strings and can be used in the interface
file wherever ordinary strings can be used.

In addition, starting in version 1.1.1, abuild can access command-line parameters of the form VAR=val from interface
files. This works identically to environment variables. Parameter references are of the form $(PARAM:PARAMETER)

1 In this way, abuild's handles line continuation like GNU Make and the C shell. This is different from how the Bourne shell and the C programming
language treat line continuation characters: in those environments, a quoted newline disappears entirely. The only time this matters is if there are
no spaces at the beginning of a line following a line continuation character. For abuild, make, and the C shell it doesn't matter whether or not space
is present at the beginning of a line following a line continuation character, but for C and the Bourne shell, it does.
2 This syntax restriction is somewhat arbitrary, but it makes it less likely that syntax errors in specifying environment variable references will create
hard-to-solve parsing errors in interface files. If this restriction is in your way, you're probably abusing this feature and may need to rethink why
you're accessing environment variables to begin with.

The Abuild Interface System

85

or $(PARAM:PARMETER:default-value). As with environment variable references, accessing an unspecified param-
eter without a default is an error, and parameter expansions are treated as strings by the interface parser. This feature
should also be used sparingly as it can create plenty of opportunity for unpredictable builds. The main valid use case
for accessing parameters from an interface file would be to allow special debugging changes that allow modifying
build behavior from the command-line for particular circumstances. Keep in mind that changing parameters on the
command line has no impact on dependencies, so gratuitous and careless use of this feature can lead to unreproducible
builds. That said, this feature does not make abuild inherently less safe since it has always been possible to access
parameters and the environment directly from make code.

Variables may contain single scalar values or they may contain lists of values of one of the three supported types:
boolean, string, or filename.

Boolean variables are simple true/false values. The values 1 and true are interpreted interchangeably as true, and the
values 0 and false are interpreted interchangeably as false. Regardless of whether the word or numeric value is used
to assign to boolean variables, the normalized values of 0 and 1 are passed to the backend build system. (For simplicity
and consistency, this is true even for the Groovy backend, which could handle actual boolean values instead.) String
variables just contain arbitrary text. It is possible to embed spaces in string variables by quoting them with a backslash,
but keep in mind that not all backends handle spaces in single-word variable values cleanly. For example, dealing with
embedded spaces in variable names in GNU Make is impractical since it uses space as a word delimiter and offers no
specific quoting mechanisms. The values of filename variables are interpreted to be path names. Path names may be
specified with either forward slashes or backslashes on any platform. Relative paths (those that do not start with a path
separator character or, on Windows, also a drive letter) are interpreted as relative to the file in which they are assigned,
not the file in which they are referenced as is the case with make. This means that build items can export information
about their local files using relative paths without having to use any special variables that point to their own local
directories. Although this is different from how make works, it is the only sensible semantic for files that are referenced
from multiple locations, and it is one of the most important and useful features of the abuild interface system.

List variables may contain multiple space-separated words. Assignments to list variables may span multiple lines by
using a trailing backslash to indicate continuation to the next line. Each element of a list must be the same type. Lists
can be made of any of the supported scalar types. (Lists of boolean values are supported, though they are essentially
useless.) List variables must be declared as either append or prepend, depending upon whether successive assignments
are appended or prepended to the value of the list. This is described in more depth when we discuss variable assignment
below.

Scalar variables may be assigned to in one of three ways: normal, override, and fallback. A normal assignment to a
scalar variable fails if the variable already has a value. An override assignment initializes a previously uninitialized
variable and replaces any previously assigned value. A fallback assignment sets the value of the variable only if it
has not previously been initialized. Uninitialized variables are passed to the backend as empty strings. It is legal to
initialize a string variable to the empty string, and doing this is distinct from not initializing it.

List variables work differently from anything you're likely to have encountered in other environments, but they offer
functionality that is particularly useful when building software. List variables may be assigned to multiple times. The
value in each individual assignment may contain zero or more words. Depending on whether the variable was declared
as append or prepend, the values are appended to or prepended to the list in the order in which they appear in the
specific assignment. An example is provided below.

Scalar and list variables can both be reset using the reset statement. This resets the variable back to its initial state,
which is uninitialized for scalars and empty for lists.

Any variable assignment statement can be made conditional upon the presence of a given interface flag. Interface flags
are introduced in Chapter 23, Interface Flags, page 150, and the details of how to use them in interface files are
discussed later in this chapter.

Abuild supports nested conditionals, each of which may contain an if clause, zero or more elseif clauses, and an optional
else clause. The abuild interface syntax supports no relational operators: all conditionals are expressed in terms of
function calls, the details of which are provided below.

The Abuild Interface System

86

In addition to supporting variables and conditionals, it is possible to specify that certain variables are relevant only to
build items of a specific target type. A target type restriction applies until the next target-type directive or until the end
of the current file and all the files it loads as after-build files. By default, declarations in an Abuild.interface file apply
to all target types. The vast majority of interface files will not have to include any target type restrictions.

It is possible for a build item to contain interface information that is intended for items that depend on it but not intended
for the item itself. Typical uses cases would include when some of this information is a product of the build or when a
build item needs to modify interface information provided by a dependency after it has finished using the information
itself. To support this, an Abuild.interface file may specify additional interface files that are not to be read until after the
item is built. The values in any such files are not available to the build item itself, but they are available to any items that
depend on the build item that exports this interface. Such files may be dynamically generated (such as with autoconf;
see Section 18.3, “Autoconf Example”, page 99), or they may be hand-generated files that are just intended not to
apply to the build of the current build item (see Section 27.1, “Opaque Wrapper Example”, page 179).

By default, once a variable is declared and assigned to in a build item's Abuild.interface, the declaration and assign-
ments are automatically visible to all build items that depend on the item that made the declaration or assignment. In
this sense, abuild variables are said to be recursive. It is also possible to declare a variable as non-recursive, in which
case assignments to the variable are only visible in the item itself and in items that depend directly on the item that
makes the assignment. Declarations inherit normally. 3

It is also possible to declare an interface variable as local. When a variable is declared as local, the declaration and
assignment are not visible to any other build items. This can be useful for providing values only to the current build
item or for using variables to hold temporary values within the Abuild.interface file and any after-build files that it
may explicitly reference.

17.2. Abuild.interface Syntactic Details
In this section, we provide the syntactic details for each of the capabilities described in the previous section. There
are some aspects of how Abuild.interface files are interpreted that are different from other systems you have likely
encountered. If you are already familiar with the basics of how these files work, this section can serve as a quick
reference.

Note

If you only read one thing, read about list assignment. Assignment to list variables is probably different for
Abuild.interface files than for any other variable assignment system you're likely to have encountered. It is
specifically designed to support building up lists gradually by interpreting multiple files in a specific order.

comment
Any line beginning with a # optionally preceded by whitespace is treated as a comment. Comments are completely
ignored and, as such, have no effect on line continuation. Note that the # does not have any special meaning when
it appears in another context. There is no syntax for including comments within a line that contains other content.

variable declaration
A scalar variable declaration takes the form

declare variable [scope] type [= value]

3 The rationale behind using the terms recursive and non-recursive have to do with how these variables are used. Conceptually, when you reference
an interface variable, you see all assignments made to it by any of your recursively expanded list of dependencies, i.e., your direct and indirect
dependencies. When a variable is declared to be non-recursive, you only assignments made by your direct dependencies. Other terms, such as
indirect or non-inheriting would be technically incorrect or slightly misleading. Although there's nothing specifically recursive or non-recursive
about how interface variables are used, we feel that this choice of terminology is a reasonable reflection of the semantics achieved.

The Abuild Interface System

87

where variable is the name of the variable and type is one of boolean, string, or filename. If speci-
fied, scope may be one of non-recursive or local. The declaration may also be followed optionally be an
initialization, which takes the same form as assignment, described below. Example scalar variable declarations:

declare CODEGEN filename
declare HAS_CLASS boolean
declare _dist local filename = $(ABUILD_OUTPUT_DIR)/dist

A list variable declaration takes the form

declare variable [scope] list type append-type [= value]

where variable is the name of the variable, type is one of boolean, string, or filename, and ap-
pend-type is one of append or prepend. The optional scope specification is the same as for scalar vari-
ables (non-recursive or local), and as with scalar variables, an optional initialization may be provided.
Example list variable declarations:

declare QFLAGS list string append
declare QPATHS list filename prepend = qfiles private-qfiles
declare DEPWORDS non-recursive list string append

Scalar variables start off uninitialized. List variables start off containing zero items.

scalar variable assignment
Scalar variables may be assigned in one of three ways: normal, override, or default. A normal assignment looks
like this:

variable = value

where variable is the variable name and value is a single word (leading and trailing space ignored). Extra
whitespace is permitted around the = sign.

Override assignments look like this:

override variable = value

Fallback assignments look like this:

fallback variable = value

Example scalar variable assignments:

fallback CODEGEN = gen_code.pl
HAS_CLASS = 0
override HAS_CLASS = 1

list variable assignment
List variables are assigned using a simple = operator:

list-variable = value

where value consists of zero or more words, and the semantics of the assignment depend on how the list was
declared. For append lists, the assignment operator appends the words to the existing list in the order in which

The Abuild Interface System

88

they appear. For prepend lists, the assignment operator prepends the words to the existing value of list in the
order in which they appear. For example, if the variables LIBS is declared as a prepend list of strings, these
two statements would result in LIBS containing the value lib3 lib4 lib1 lib2:

LIBS = lib1 lib2
LIBS = lib3 lib4

The distinction of whether a list is declared as append or prepend generally doesn't matter to the user, but
there are cases in a build environment in which it is important to prepend to a list. One notable example is the list
of libraries that are linked into an application: if one library calls functions from another library, the dependent
library must come before the library on which it depends in the link command. Since abuild reads the dependency's
interface file first, the depending library must prepend itself to the list of libraries. Note that multiple assignments
to a single list variable would ordinarily not occur in the same Abuild.interface file, but would instead occur
over successive files. It is perfectly valid to assign multiple times in the same file, however. One instance in
which this would typically occur would be with private interfaces, as illustrated in Section 23.3, “Private Interface
Example”, page 152. Another common case would be with conditional assignments.

variable reset
List and scalar variables can both be reset. After a variable is reset, its value becomes uninitialized (for scalars)
or empty (for lists) just as if it had just been declared. The syntax for resetting a variable is

reset variable

It is also possible to reset all variables with

reset-all

A reset of a specific variable, either by an explicit reset or a reset-all, can be blocked within the scope of a single
Abuild.interface file or any files it loads with after-build. To block a variable from being reset, use

no-reset variable

Any no-reset commands will apply to the next reset or reset-all that appears in the current file or files it explicitly
loads. (Although there would be no real reason to use no-reset before a specific reset of a specific variable, abuild
does support this construct.)

Variable reset operations are used fairly infrequently, but there are use cases that justify all of the various reset
operations. For examples of using them, please see Section 24.3, “Explicit Cross-Platform Dependencies”, page
158 and Chapter 27, Opaque Wrappers, page 179.

There are some subtleties about the effect of a variable reset when interface files are loaded. For details, see
Section 33.7, “Implementation of the Abuild Interface System”, page 220.

flag-based variable assignment
An Abuild.interface file may prefix any variable assignment (normal, override, fallback, scalar, or list) with a
flag statement. This indicates that that particular assignment will be ignored by build items that don't request the
particular flag through the -flag=interface-flag syntax in their Abuild.conf files. A flag-based assignment
looks like this:

flag interface-flag assignment-statement

Abuild enforces that a build item's Abuild.interface and any after-build files that it reads may only use the flag
statement for a flag declared in the build item's supported-flags key in its own Abuild.conf. For an example of
using flag-based assignment, see Section 23.3, “Private Interface Example”, page 152.

The Abuild Interface System

89

after-build file specification
Abuild allows you to specify the name of an additional interface file with the same syntax as Abuild.interface that
is loaded immediately after the current item has been built, before any items that depend on this item are built.
Because the file is loaded after the build has been completed, any directives in this file will be visible to items that
depend on this item but not by this item itself. To specify the name of such a file, use

after-build filename

where filename is the path to the file to be loaded. A relative path is interpreted as relative to the original
Abuild.interface file. Note that files loaded by after-build may themselves not include after-build directives. It is
also not permitted to have after-build statements in interface files belonging to plugins or build items that have
no build files. (Having them would be meaningless since such build items are not built.)

Since interface statements in after-build files are visible to items that depend on this build item but not to the
item itself, this mechanism is useful for changing interface variables for the item's reverse dependencies without
changing what the build item itself sees. The Opaque Wrapper example (Section 27.1, “Opaque Wrapper Exam-
ple”, page 179) does this. It also makes this construct useful for automatically generated interface data. For an
example of that use, see Section 18.3, “Autoconf Example”, page 99.

target type restriction
To specify the target type to which subsequent variable declarations belong, use

target-type type

where type is the name of the target type. For information about target types, see Chapter 5, Target Types,
Platform Types, and Platforms, page 24. In addition to the built-in target types, the special type all may be
used to indicate that variables should be made available to all target types. In practice, there is little reason to
ever restrict a variable to a particular target type, though many of the abuild predefined variables are restricted.
Restricting the target type of a variable only determines whether that variable is passed to the backend, so the
only reason to restrict a variable to a specific target type would be to reduce the number of unneeded variables
that were passed to the backend. It has no impact on variable scope, visibility, or even availability for use in other
Abuild.interface files.

conditional
Conditionals in Abuild.interface take the following form:

if (condition)
 ...valid code...
elseif (condition)
 ...valid code...
elseif (condition)
 ...valid code...
else
 ...valid code...
endif

An if block may contain zero or more elseif clauses and an optional else clause. Any valid Abuild.interface code,
including nested conditionals, is permitted inside a conditional block. Recall that all variables have global scope
including variables declared inside of conditional blocks. Code inside of conditions that are not satisfied is ignored
but must be syntactically valid.

The conditions specified above may be of one of the following forms:

$(variable)

The Abuild Interface System

90

where variable is a boolean variable, or

function(arg, arg, ...)

where function is a valid Abuild.interface conditional function and each arg consists of one or more words.
Only variables declared as boolean and specific conditional functions, described in the next section, are per-
mitted in conditionals. There are no relational operators, and variables of other types whose values happen to be
valid boolean values are not allowed in conditionals.

17.3. Abuild Interface Conditional Functions
A single Abuild.interface conditional must appear in parentheses after an if or elseif statement. The conditional may
be a simple boolean variable reference, or it may be a call to any of the provided conditional functions, each of which
returns a boolean value. Conditional functions may be nested as needed. Any boolean argument described below may
a be function call or a simple boolean variable reference, thus allowing function calls to nest. The following functions
are defined:

and(bool1, bool2)
Returns true if both expressions are true and false otherwise.

or(bool1, bool2)
Returns true if either value is true.

not(bool)
Returns true if the given value is false, or false otherwise.

equals(scalar1, scalar2)
Returns true if the two scalars contain the same contents. The two values must be the same type. The equals
function may not be used to compare lists.

matches(string, regex)
Returns true if the string value matches the given Perl-compatible regular expression. Regular expression matches
may be applied only to strings. Note that matches returns true if the regular expression matches the whole string.
If you need to do a partial match, you must add .* at the beginning and/or end of the expression.

contains(list, scalar)
Returns true if the given list contains the given scalar value. The scalar must have the same type as the list.

containsmatch(string-list, regex)
Returns true if the given list contains any elements that match the given Perl-compatible regular expression. The
list must be a list of strings. As with matches, the regular expression must match the entirety of some member
of the list.

17.4. Abuild.interface and Target Types
Abuild maintains a single variable symbol table. All variables are global, and all variables are visible to interface code
of any item regardless of target type. Variables may be declared to apply to a specific target type. By default, they apply
to all target types. When interface variables are passed to the backend, only variables declared in either the special
target type all or in the item's own target type are made available.

In general, end users will not have to be concerned about which target types a variable applies to. A build item could,
in principle, assign to both INCLUDES and abuild.classpath without having to care that only object-code items
will see INCLUDES and only java items will see abuild.classpath.

The Abuild Interface System

91

17.5. Predefined Abuild.interface Variables
Before abuild reads any Abuild.interface files, it provides certain predefined variables. We divide them into categories
based on target type.

The variables mentioned here, along with any additional variables that are declared in Abuild.interface files, are made
available to the backends in the form of identically named make variables or Groovy framework definitions and ant
properties.

17.5.1. Interface Variables Available to All Items

The following interface variables are available to build items of all target types:

ABUILD_ITEM_NAME
The name of the current build item

ABUILD_OUTPUT_DIR
The output directory in which this item's products are generated for this platform. This is the most often referenced
abuild interface variable as it is normal practice to expand this variable when setting the names of library direc-
tories, classpaths, or anything else that references generated targets.

ABUILD_PLATFORM
The name of the platform on behalf of which this interface is being read. This variable is not used very often.
When referring to the output directory, always use $(ABUILD_OUTPUT_DIR) instead of writing something in
terms of this variable.

ABUILD_PLATFORM_TYPE
The platform type of the platform on behalf of which this interface is being read

ABUILD_STDOUT_IS_TTY
A Boolean variable indicate whether abuild's standard output is a terminal. It can be useful to know this so that
this information can be passed to other programs invoked by backends, particularly those (like ant) which redirect
output through a pipe that ultimately goes to abuild's standard output.

ABUILD_TARGET_TYPE
The target type of the current build item

ABUILD_THIS
The obsolete variable ABUILD_THIS contains the name of the current build item. It would have been deprecated
in abuild version 1.1, but there is no reliable way to deprecate an interface variable since abuild can't detect its use
in backend build files. New code should not use ABUILD_THIS, but should use ABUILD_ITEM_NAME instead.

ABUILD_TREE_NAME
The name of the current build item's tree

17.5.2. Interface Variables for Object-Code Items

The following interface variables are available for object-code build items:

ABUILD_PLATFORM_COMPILER
For object-code items, this variable contains the COMPILER field of the platform (see Section 5.2, “Ob-
ject-Code Platforms”, page 25).

The Abuild Interface System

92

ABUILD_PLATFORM_CPU
For object-code items, this variable contains the CPU field of the platform (see Section 5.2, “Object-Code
Platforms”, page 25).

ABUILD_PLATFORM_OPTION
For object-code items, this variable contains the OPTION field of the platform if present or the empty string
otherwise (see Section 5.2, “Object-Code Platforms”, page 25).

ABUILD_PLATFORM_OS
For object-code items, this variable contains the OS field of the platform (see Section 5.2, “Object-Code
Platforms”, page 25).

ABUILD_PLATFORM_TOOLSET
For object-code items, this variable contains the TOOLSET field of the platform (see Section 5.2, “Ob-
ject-Code Platforms”, page 25).

INCLUDES
This variable is to contain directories that users of this build item should add to their include paths.

LIBDIRS
This variable is to contain directories that users linking with this build item's libraries should add to their library
search paths. Typically, this is just set to $(ABUILD_OUTPUT_DIR) since this is where abuild creates library files.

LIBS
This variable is to contain the names of libraries (without any prefixes, suffixes, or command-line flags) that this
build item provides.

XCFLAGS
This variable is to contain additional flags, beyond those in $(XCPPFLAGS) to be passed to the compiler when
compiling C code. This variable will be used very infrequently.

XCPPFLAGS
This variable is to contain additional preprocessor flags that must be added when using this item. This flag should
be used very sparingly as changing the value of this variable does not cause things to automatically recompile. It
is here primarily to support third-party libraries that only work if a certain flag is defined. If you are using this to
change the configuration of a build item, please consider using another method instead, such as defining symbols
in a header file or using runtime configuration. For an example of how to do this based on the value of a variable,
see Section 22.5, “Dependency on a Make Variable”, page 142.

XCXXFLAGS
This variable is to contain additional flags, beyond those in $(XCFLAGS) and $(XCPPFLAGS) to be passed to the
compiler when compiling C++ code. This variable will be used very infrequently.

XLINKFLAGS
This variable is to contain additional flags to be added to the command-line when linking. The most common
use for this would be to pass flags to the linker that are other than libraries or library paths. For linking with
libraries, whether they are your own libraries or third-party libraries, you are better off using $(LIBDIRS) and
$(LIBS) instead.

SYSTEM_INCLUDES
This variable, introduced in abuild 1.1.6, may contain a list of directories that contain system include files. For
compilers that support this, any directory mentioned in the INCLUDES directory that starts with any of the paths
mentioned in the SYSTEM_INCLUDES directory will be specified to the compiler using a flag that indicates that
it's a system include directory. Some compilers treat system include directories differently, such as suppressing
most compiler warnings. For gcc, this causes -isystem to be used rather than -I when specifying the include

The Abuild Interface System

93

directory. Note that directories must still be added to INCLUDES to be searched. A typical use of this would be
for build items that are providing interfaces to third-party libraries. Those build items' Abuild.interface files may
add the directory to both INCLUDES and SYSTEM_INCLUDES to prevent users from having to look at warning
messages generated by incorrect code in the third-party library.

Warning

Although abuild allows you to do so, it is strongly recommended that you avoid using these variables to
configure your build items by passing preprocessor symbol definitions on the command line. There are some
times when passing preprocessor symbols on the command line is okay, such as when you're passing a pa-
rameter required by a third-party library or passing in some truly static value such as the name of the operating
system, but passing dynamic configuration information this way is dangerous. A significant reason for this
is that make's entire dependency system is based on file modification times. If you change a preprocessor
symbol in an Abuild.mk or Abuild.interface file, there is nothing that triggers anything to get rebuilt. The
result is that you can end up with items that build inconsistently with respect to that symbol. Furthermore,
abuild has no way to perform its integrity checks relative to the values of compiler flags in build and interface
files. If you need to have preprocessor-based static configuration of your code, a better way to handle it is by
creating a header file and putting your #defines there. That way, when you modify the header file, anything
that depends upon that file will rebuild automatically.

Note that the various FLAGS variables above can also be set (or, more likely, appended to) in Abuild.mk files, as can
additional variables to control flags on a per-file basis. Please run abuild rules-help in a C/C++ build item or see
Section 18.2.1, “C and C++: ccxx Rules”, page 95 for details.

17.5.3. Interface Variables for Java Items

The following variables are used by java build items, described here from the context of the item assigning to them:

abuild.classpath
This variable is to contain generated JAR files to add to the compile-time classpath and to include by default in
higher level archives. Most ordinary Java build items that create JAR files will assign to this variable. Its value will
typically be $(ABUILD_DIR_OUTPUT)/dist/JarFile.jar, where JarFile.jar is the name of the JAR file
you placed in the java.jarName property in your Abuild.groovy file. See also abuild.classpath.manifest below.

abuild.classpath.manifest
This variable is to contain JAR files whose names should be listed in the Class-Path key of the manifest of
JAR files that depend on it directly. In most cases, anything that is assigned to abuild.classpath must also be
assigned to abuild.classpath.manifest. The abuild.classpath.manifest variable is declared as non-recursive,
so assignments made to it are visible only to items that depend directly on the item making the assignment. This
is appropriate because Java handles indirect dependencies on its own.

abuild.classpath.external
This variable is to contain externally supplied JAR files to add to the compile-time classpath. Unlike JARs added
to abuild.classpath, JAR files placed here will not be included in higher level archives by default. Whether you
assign a JAR to abuild.classpath or abuild.classpath.external depends on the nature of your runtime environment.
Java SE applications probably don't need to use this variable at all. Java EE applications should use this primarily
for JAR files that are required at compile time by are provided by default by the application server or runtime
environment. As with abuild.classpath, Values assigned to abuild.classpath.external will usually also have to be
assigned to abuild.classpath.manifest.

For additional discussion of how these are used by the Groovy backend, please see Section 19.4, “Class Paths and
Class Path Variables”, page 108. In that section, we discuss the variables from the context of the item that is using
them rather than the item that is assigning to them.

The Abuild Interface System

94

17.6. Debugging Interface Issues
Although most Abuild.interface files are reasonably simple and have easily understandable consequences, there will
inevitably be situations in which some interface variable has a value that you don't understand. For example, you might
see an assignment in one Abuild.interface file that appears to have no effect, or you may wonder which of a very long
list of dependencies was responsible for a particular variable assignment or declaration.

Starting with abuild version 1.0.3, you can have abuild dump everything it knows about a build item's interface vari-
ables into an XML file. Do this by passing the --dump-interfaces flag to any abuild command that builds something.
Doing so will cause abuild to create interface dump files for every build item including those that don't build anything
and even those that have no Abuild.interface files themselves.

For build items that do not have build files, abuild creates a file called .ab-interface-dump.xml in the output directory
for every platform on which that build item exists. This file contains information about all interface variables that
are known to that item. For build items that have build files, abuild creates two files: .ab-interface-dump.before-
build.xml and .ab-interface-dump.after-build.xml. If a build has no Abuild.interface or the item's Abuild.interface has
no after-build files, the two files are identical and are analogous to .ab-interface-dump.xml files of build items that
don't have build files. Otherwise, the .ab-interface-dump.before-build.xml file reflects the interface as seen by the build
item itself (before any after-build files are loaded), and the .ab-interface-dump.after-build.xml shows what interface
this build item provides to items that depend on it.

Note that the interface dump files contain not just a list of variables with their values but a complete list of everything
abuild knows about each variable. This includes its type, where it was declared, every assignment that was made to
it, every reset of every variable, etc. When you reference an interface variable, abuild computes the value on the fly,
sometimes influenced by interface flags that may be in effect. To get maximum benefit from the information in the
interface dump files, you must understand how this works. For those details, please refer to Section 33.7, “Implemen-
tation of the Abuild Interface System”, page 220. The format of the interface dump file is described in Appendix G,
--dump-interfaces Format, page 303.

95

Chapter 18. The GNU Make backend
 The GNU Make backend is used to build items that contain an Abuild.mk file. In this chapter, we describe how to set
up your Abuild.mk file and provide details specific to the rule sets provided by the abuild GNU Make backend.

18.1. General Abuild.mk Syntax
The Abuild.mk file is read by GNU Make and is a GNU Make fragment. It therefore has GNU Make syntax. The
Abuild.mk file is intended to contain only variable settings. It contains no make rules or include directives. Abuild
automatically includes your Abuild.mk file at the appropriate time and in the appropriate context.

The most important line in Abuild.mk is the setting of the RULES variable. Its purpose is to tell abuild which rule
set should be used to generate targets from sources. Most of the remaining variables that are set are dependent upon
which rules are being used. It is always possible to use abuild's help system to get detailed rule-specific help about
what variables you are expected to define in your Abuild.mk for a specific set of rules. Run abuild --help help for
additional information. Abuild provides some built-in rules. Additional rules may provided my plugins or items that
you depend on. You can always run abuild --help rules list to get a list of rules that are available to your build item.

In rare instances, it may be necessary to create local rules for a specific build item. Examples may include one-off,
special-purpose code generators that are specific to a particular build item. To use local rules, place a list of files
that contain definitions of your rules in the LOCAL_RULES variable. Files listed there are resolved relative to the
Abuild.mk. They may contain any valid GNU Make code. If you have written the same local rule in more than one
or two places, you are probably doing something wrong and should be using build-item-specific rules (Chapter 22,
Build Item Rules and Automatically Generated Code , page 129) or plugins (Chapter 29, Enhancing Abuild with
Plugins, page 185) instead.

Please note that local rules are run from the context of the output directory—you must keep this in mind when using
relative paths from your local rules. The make variable SRCDIR is always set to a relative path to the directory that
contains the Abuild.mk file. Also, local rules should avoid creating files outside of the output directory since these files
will not be removed by the clean target.

18.2. Make Rules
The following sections describe the make-based rule sets provided by abuild.

18.2.1. C and C++: ccxx Rules

Rules for compiling C and C++ code are provided by the ccxx rules. These rules also include support for flex, bison,
and Sun RPC. It is possible for a single build item to build multiple targets including any mixture of static library,
shared library, and executable targets.

A note about flex and bison before we get to the main event: the flex and bison rules can take advantage of abuild's
codegen-wrapper utility. If you set the variable FLEX_CACHE, abuild will cache generated flex output files and
input file checksums making it possible for your flex code to be used on systems that don't have flex. The variable
BISON_CACHE serves the same function for code generated with bison. Abuild's own build uses this functionality.
To use this facility, set FLEX_CACHE and/or BISON_CACHE to directories relative to our source directory. Abuild
will copy files to or from this directory during its build. These directories are relative to your source directory, not
your output directory. As such, the resulting files are likely to be controlled in your version control system. This is
an exception to the ordinary rule of abuild not creating files outside of the output directory, but it's an appropriate

The GNU Make backend

96

exception as the intention is to control these automatically generated files so that they could be available for users
who didn't have flex or bison. For information about using the codegen-wrapper utility with your own builds, see
Section 22.6, “Caching Generated Files”, page 145.

When building C and C++ code, you must define at least one of TARGETS_lib or TARGETS_bin. These variables
contain a list of library and executable targets respectively. Targets should be specified without any operating sys-
tem-specific prefixes or suffixes. For example, the library target moo might generate libmoo.a on a UNIX system or
moo.lib on a Windows system. Likewise, the executable target quack might generate quack on a UNIX system and
quack.exe on a Windows system.

For each target target listed in TARGETS_lib, you must define the variable SRCS_lib_target to contain a
list of source files used to build the library. Likewise, for each binary target in TARGETS_bin, you must define
SRCS_bin_target. These variables can contain any mixture of C and C++ files. The source files listed in these
variables are typically located in the same directory as the Abuild.mk, but they may also refer to automatically source
files that will actually appear in the output directory. 1 There are variables that can be used to control the creation of
shared libraries. For details, see Section 21.1, “Building Shared Libraries”, page 123. Files whose names end with
.c are treated as C code. Files whose names end with either .cc or .cpp are considered to be C++ code. Although you
can have any mixture of binary and library targets in a build item, no single source file should be listed in more than
one target. Additionally, abuild will automatically include any library targets at the beginning of the library list when
linking any binary targets in the build item. All targets are created directly in the abuild output directory.

In addition to the standard targets, the ccxx rules provide a special target ccxx_debug. This target prints the current
include and library path as well as the list of libraries that we are linking against. This can be a useful debugging tool
for solving dependency declaration problems.

It is also possible to add additional preprocessor, compiler, or linker flags globally or on a per-file basis and to specif-
ically override debug, optimization, or warning flags globally or on a per-file basis. This is done by setting the values
of certain make variables, some of which may also be set in Abuild.interface. Details about these variables may be
obtained by running abuild rules-help from any C/C++ build item. The following variables are available:

XCPPFLAGS
additional flags passed to the preprocessor, C compiler, and C++ compiler (but not the linker)

XCFLAGS
additional flags passed to the C compiler, C++ compiler, and linker

XCXXFLAGS
additional flags passed to the C++ compiler and linker

XLINKFLAGS
additional flags passed to the linker—usually not used for libraries

DFLAGS
debug flags passed to the processor, compilers, and linker

OFLAGS
optimization flags passed to the processor, compilers, and linker

WFLAGS
warning flags passed to the processor, compilers, and linker

1 For example, if you have a local rule that generates autogen.cc in the output directory, you can simply list autogen.cc in one of your SRCS variables,
and abuild will find it anyway. This is because abuild's make code uses GNU Make's vpath feature. We provide an example of this construct in
Section 22.2, “Code Generator Example for Make”, page 130.

The GNU Make backend

97

Note that the XCPPFLAGS, XCFLAGS, XCXXFLAGS, and XLINKFLAGS variables may be set in Abuild.interface as
well. Therefore, although you assign to them normally with = in Abuild.interface, when assigning to them in Abuild.mk,
it is generally better to append to these variables (using +=) rather than to set them outright. Also, keep in mind that
flags are often compiler-specific. It may often make sense to set certain flags conditionally upon the value of the
$(ABUILD_PLATFORM_COMPILER) variable or other platform field variables. This can be done using regular GNU
Make conditional syntax.

Each of the above variables also has a file-specific version. For the X*FLAGS variables, the file-specific values are
added to the general values. For example, setting XCPPFLAGS_File.cc will cause the value of that variable to be added
to the preprocessor, C compiler and C++ compiler invocations for File.cc. File-specific versions of XCPPFLAGS,
XCFLAGS, and XCXXFLAGS are used only for compilation and, if appropriate, preprocessing of those specific files.
They are not used at link time.

The file-specific versions of DFLAGS, OFLAGS, and WFLAGS override the default values rather than supple-
menting them. This makes it possible to completely change debugging flags, optimization flags, or warning flags
for specific source files. For example, if Hardware.cc absolutely cannot be compiled with any optimization, you
could set OFLAGS_Hardware.cc to the empty string to suppress optimization on that file regardless of the value of
OFLAGS. Similarly, if autogen.c were an automatically generated file with lots of warnings, you could explicitly set
WFLAGS_autogen.c to the empty string or to a flag that suppresses warnings. This would suppress warnings for that
file without affecting other files. If you wish to append to the default flags instead of replacing them, include the regular
variable name in the value, as in WFLAGS_File.cc := $(WFLAGS) -Wextra or even WFLAGS_File.cc :=
$(filter-out -Wall,$(WFLAGS)).

The ccxx rules provide a mechanism for you to generate preprocessed output for any C or C++ file. For file.c,
file.cc, or file.cpp, run abuild file.i. This will generate file.i in the output directory. Its contents will be the
output of running the preprocessor over the specified source file with all the same flags that would be used during
actual compilation. 2

When invoking abuild to build C or C++ executables or shared libraries, it is possible to set the make variable
LINKWRAPPER to the name of a program that should wrap the link command. This makes it possible to use programs
such as Purify or Quantify that wrap the link step in this fashion.

Ordinarily, abuild uses a C++ compiler or linker to link all executables and shared libraries. If you are writing straight
C code that doesn't make any calls to C++ functions including those in external libraries and you want to link your
program as a C program to avoid runtime dependencies on the C++ standard libraries, set the variable LINK_AS_C to
some non-empty value in your Abuild.mk. This applies to all shared libraries and executables in the build item.

Most of the time, abuild manages all the dependencies of the source and object files (as opposed to inter-build-item
dependencies) automatically, but there are some rare instances in which you may have to create such dependencies
on your own, such as when an object file depends on an automatically generate header file that is generated in the
same build item. For an example of this, see Section 22.5, “Dependency on a Make Variable”, page 142. To make
it possible to express such dependencies in a portable fashion, the ccxx rules provide the variables LOBJ and OBJ
which are set to the object file suffixes for library object files and non-library object files respectively. For example,
if you have a source file called File.cc that is part of a library, the name of the object file will be File.$(LOBJ), and
the file will be created inside the abuild output directory. If File.cc were part of an executable instead, the object file
would be File.$(OBJ) instead. 3

As is the case for any rule set, you can run abuild --help rules rule:ccxx for additional information. This help text is
also included in Section E.10, “abuild --help rules rule:ccxx”, page 290.

2 The .i suffix is a traditional UNIX suffix for preprocessed C code and was created as an intermediate file by some compilers. GCC recognizes this
as preprocessed C code and also recognizes .ii as a suffix for preprocessed C++ code. When abuild is given a .i file as a suffix, its make rules use
a pattern-based rule to run the preprocessor over the file, it never uses the resulting files as input to the compiler. Abuild uses the original suffix of
the file (.c, .cc, or .cpp) to determine whether the file is a C or C++ source file and does not therefore need to distinguish between .i and .ii.
3 LOBJ and OBJ usually have the same value as each other, and the value is usually “o” on UNIX systems and “obj” on Windows systems.
However, there are some circumstances under which either of these conditions may not be true, so it is best to use LOBJ or OBJ explicitly as required.

The GNU Make backend

98

There is a lot more to abuild's C and C++ generation than is discussed here. For a complete understanding of how
it works, you are encouraged to read rules/object-code/ccxx.mk in the abuild distribution (Appendix I, The ccxx.mk
File, page 306). There you will find copious comments and a lot of pretty hairy GNU Make code.

18.2.2. Options for the msvc Compiler
Abuild includes built-in support for Microsoft's Visual C++ compiler on Windows. There are three MSVC-specific
variables that can be set:

• MSVC_RUNTIME_FLAGS: set to /MD by default, which causes the executable to dependent on Microsoft runtime
DLLs. By setting this to /MT, it is possible to create executables that statically link with the runtime environment.
A trailing “d” is automatically appended when building debugging executables or libraries.

• MSVC_MANAGEMENT_FLAGS: set to /EHsc by default, which enables synchronous exception handling and as-
sumes “C” functions do not throw exceptions. By setting this to /clr, it is possible to build programs that work with
the .NET framework.

• MSVC_GLOBAL_FLAGS: contains flags that are passed globally to all compilation commands. Users will seldom
have to modify this. For details, see comments in make/toolchains/msvc.mk.

18.2.3. Autoconf: autoconf Rules

The autoconf rules provide rules for including autoconf fragments for a build item. 4 Rather than having a monolithic
autoconf-based component in a source tree, it is recommended that individual build items use autoconf for only those
things they need. This reduces the likelihood that something may fail to build due to lack of support for something it
doesn't need (but that is checked for by a monolithic autoconf component). The only caveat to doing this is that, if you
use autoconf-generated header files, you may find that the same symbols are defined in more than one place. You will
have to experiment and come up with appropriate standards for your project.

The autoconf rules don't supply any special targets. A reasonably complete example of using autoconf follows in Sec-
tion 18.3, “Autoconf Example”, page 99. You may also run abuild --help rules rule:autoconf for full information
on using these rules. This help text is also included in Section E.9, “abuild --help rules rule:autoconf”, page 289.

Some of the tools run by autoconf create temporary files that may cause problems when running parallel builds. It is
therefore recommended that you place attributes: serial in the Abuild.conf file of build items that use autoconf rules.

Autoconf properly honors your C/C++ toolchain and runs configure with the proper C/C++ compilation environment
defined. The usual approach for autoconf-based build items is that, if make variables need to be defined based on
the results of running configure, configure.ac generates a file called autoconf.interface which is specified as an af-
ter-build file in Abuild.interface. This means that the autoconf-based build item itself may not include code that is
conditional upon the results of running autoconf. It is okay, however, for build items that depend on an autoconf-based
build item to include conditional code in their Abuild.interface and Abuild.mk files based on variables defined in its
autoconf.interface should this be required.

18.2.4. Do Nothing: empty Rules
In some rare cases, it may be desirable to create an Abuild.mk file that does nothing. One reason for doing this would
be if you had a library that contained some code that should only exist on certain platforms. You might want to create
an Abuild.mk file that was conditional upon some value of the ABUILD_PLATFORM_OS variable, for example. Since
abuild requires that you set at least one of RULES or LOCAL_RULES, you can set the RULES variable to the value

4 Autoconf [http://www.gnu.org/software/autoconf] is a package used to help software developers create portable code. This section assumes some
familiarity with autoconf.

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf

The GNU Make backend

99

empty. Abuild will still attempt to build the item in this case, but the build will not do anything. The empty rule set
is available for build items of any target type.

18.3. Autoconf Example
This example demonstrates how to use autoconf and also shows one use of the after-build statement within
Abuild.interface. In this example, we create a stub library that replaces functionality from an external library if that
library is not available. Our example is somewhat contrived, but it demonstrates the core functionality and patterns
required to do this. Our example resides in doc/example/general/user/derived/world-peace.

Notice that the Abuild.conf in the world-peace directory itself defines a pass-through build item (see Section 4.5,
“Special Types of Build Items”, page 21) that depends on the world-peace.stub build item:

general/user/derived/world-peace/Abuild.conf

name: world-peace
child-dirs: autoconf stub
deps: world-peace.stub

The world-peace.stub build item, in turn, depends on the world-peace.autoconf build item:

general/user/derived/world-peace/stub/Abuild.conf

name: world-peace.stub
platform-types: native
deps: world-peace.autoconf

The world-peace.autoconf build item's Abuild.interface file adds its output directory to the INCLUDES variable
since this where the autoconf-generated header file will go. Then it declares autoconf.interface in its output directory
as an after-build file using the after-build statement:

general/user/derived/world-peace/autoconf/Abuild.interface

$(ABUILD_OUTPUT_DIR) contains the autoconf-generated header.
INCLUDES = $(ABUILD_OUTPUT_DIR)

after-build $(ABUILD_OUTPUT_DIR)/autoconf.interface

This means that the autoconf.interface file won't be included when this build item is built but will be included when
other build items that depend on this one are built. This is important since the file won't actually exist yet when this
build item is being built from a clean state.

Next, look at the autoconf/Abuild.mk file:

general/user/derived/world-peace/autoconf/Abuild.mk

AUTOFILES := autoconf.interface
AUTOCONFIGH := world-peace-config.h
RULES := autoconf

The GNU Make backend

100

Here, we set the variables that the autoconf rules require. The AUTOFILES variable is set to the value
autoconf.interface, which is the same as the file name used as the after-build file in the Abuild.interface file. Addi-
tionally, we set the variable AUTOCONFIGH to the name of the header file that we will be generating.

Here is the autoconf/configure.ac file:

general/user/derived/world-peace/autoconf/configure.ac

AC_PREREQ(2.59)
AC_INIT(world-peace,1.0)
AC_CONFIG_HEADERS([world-peace-config.h])
AC_CONFIG_FILES([autoconf.interface])

AC_PROG_CXX
AC_LANG(C++)
AC_SUBST(HAVE_PRINTF)
AC_CHECK_FUNCS(printf, [HAVE_PRINTF=1], [HAVE_PRINTF=0])
AC_SUBST(HAVE_CREATE_WORLD_PEACE)
AC_CHECK_FUNCS(create_world_peace, [HAVE_CREATE_WORLD_PEACE=1],
 [HAVE_CREATE_WORLD_PEACE=0])

AC_OUTPUT

This contains normal autoconf macros. There are two important things to notice here. The first is the
AC_CONFIG_FILES macro, which tells autoconf to generate the autoconf.interface file from autoconf.interface.in.
The second is the AC_CONFIG_HEADERS call, which takes name of the file set as the value of the AUTOCONFIGH
variable in Abuild.mk. The header file template is generated automatically using autoheader. The need to duplicate
this information is unfortunate, and this may be improved in a future version of abuild. Note that the autoconf macros
don't have any knowledge of the abuild output directory. This works because we actually run autoconf inside the output
directory with copies of the input files.

Use of AC_CONFIG_HEADERS and AUTOCONFIGH are optional. If you omit one, you should omit both. If
you decide to use an autoconf-generated header, you should be aware of the possibility that you may have dupli-
cated preprocessor symbols defined by different autoconf-based build items. There are several ways to avoid this.
One way would be to create your own header file template and generate it using AC_CONFIG_FILES rather than
AC_CONFIG_HEADER. Another way would be to structure your build so that you combine functionality that requires
use of preprocessor symbols into a single build item, using separate build items only for cases that can be handled
through interface variables. It may also be possible to set XCPPFLAGS in an after-build file based on interface vari-
ables initialized by a file generated with autoconf. The most important thing is that you pick a way to do it and use
it consistently.

Next, we examine the autoconf.interface.in file:

general/user/derived/world-peace/autoconf/autoconf.interface.in

declare HAVE_PRINTF boolean
HAVE_PRINTF=@HAVE_PRINTF@

declare HAVE_CREATE_WORLD_PEACE boolean
HAVE_CREATE_WORLD_PEACE=@HAVE_CREATE_WORLD_PEACE@

if ($(HAVE_CREATE_WORLD_PEACE))

The GNU Make backend

101

 LIBS = world_peace
endif

This is just like any other file generated by autoconf: it contains substitution tokens surrounded by @ signs. Since it
is an abuild interface file, it has abuild interface syntax.

In our example, our configure.ac file checks to see whether we have two functions: printf and create_world_peace.
Unfortunately, only the first of these two functions is defined on most systems. Our autoconf.interface.in file will set
abuild boolean variables to the values determined by autoconf. Then, if the create_world_peace function is available,
we will add its library (which, in a real case, you would know or test for explicitly in configure.ac) to the library path.
If the library were not installed in the default library and include paths, it probably would also have add something
to the LIBDIRS and INCLUDES variables.

Now we turn our attention to the stub directory. This directory contains our stub implementation of
create_world_peace. It is a poor substitute for the real thing, but it will at least allow our software to compile. The
implementation protects the definition of the function with the HAVE_CREATE_WORLD_PEACE preprocessor sym-
bol as generated by autoconf. It also makes use of printf and checks to make sure it's there, just to demonstrate how
you might do such a thing:

general/user/derived/world-peace/stub/stub.cc

#include <world_peace.hh>
#include <stdio.h>

// Provide a stub version of create_world_peace if we don't have one.

#ifndef HAVE_CREATE_WORLD_PEACE
void create_world_peace()
{
 // Silly example: make this conditional upon whether we have
 // printf. This is just to illustrate a case that's true as well
 // as a case that's false.
#ifdef HAVE_PRINTF
 printf("I don't know how to create world peace.\n");
 printf("How about visualizing whirled peas?\n");
#else
error "Can't do this without printf."
#endif
}
#endif

The stub implementation provides a header file called world_peace.hh, which is presumably the same as the name of the
header provided by the real implementation and which would have been made available by the world-peace.autoconf
build item if the library were found:

general/user/derived/world-peace/stub/world_peace.hh

#ifndef __WORLD_PEACE_HH
#define __WORLD_PEACE_HH

#include <world-peace-config.h>

#ifndef HAVE_CREATE_WORLD_PEACE

The GNU Make backend

102

extern void create_world_peace();
#endif

#endif // __WORLD_PEACE_HH

The Abuild.interface file in the stub directory actually adds world-peace to the list of libraries only if the
HAVE_CREATE_WORLD_PEACE variable, as provided by world-peace.autoconf's autoconf.interface file, is
false. That way, if we had a real create_world_peace function (whose library would have presumably also been made
available to us in world-piece.autoconf's autoconf.interface file), we wouldn't provide information about our stub
library:

general/user/derived/world-peace/stub/Abuild.interface

INCLUDES = .
if (not($(HAVE_CREATE_WORLD_PEACE)))
 LIBS = world-peace-stub
 LIBDIRS = $(ABUILD_OUTPUT_DIR)
endif

Note that users of the world-peace build item actually don't even have to know whether they are using the stub library
or the real library—those details are all completely hidden inside of its private build items. Declaring a dependency
on world-peace will make sure that you have the appropriate interfaces available. You can see an example of this
by looking at main.cpp in user/derived/main/src:

general/user/derived/main/src/main.cpp

#include <ProjectLib.hpp>
#include <CommonLib2.hpp>
#include <iostream>
#include <world_peace.hh>
#include "auto.h"

int main(int argc, char* argv[])
{
 std::cout << "This is derived-main." << std::endl;
 ProjectLib l;
 l.hello();
 CommonLib2 cl2(6);
 cl2.talkAbout();
 cl2.count();
 std::cout << "Number is " << getNumber() << "." << std::endl;
 // We don't have to know or care whether this is the stub
 // implementation or the real implementation.
 create_world_peace();
 return 0;
}

103

Chapter 19. The Groovy Backend
Note

This part of the manual is not as narrative and thorough as it ideally should be. However, between this chapter
and the material in abuild's help system, all the basic information is presented, even if in an overly terse
format. As a supplement to this chapter, please refer to the help text for the java rules in Section E.8, “abuild
--help rules rule:java”, page 277. You can also refer to the complete code for the java rules in Appendix J,
The java.groovy and groovy.groovy Files, page 316.

A Groovy-based backend, primarily intended for building Java-based software, was introduced in abuild version 1.1.
This framework replaces the older, now deprecated, xml-based ant framework that was present in abuild version 1.0.
1 The old ant framework was extremely limited in capability in comparison to abuild's make backend, and it was
always considered tentative. Abuild's groovy backend is at least as powerful as its make backend offers comparable
functionality across the board. As of abuild 1.1, the specific rules provided for building Java code lack the maturity
of the C/C++ rules provided as part of abuild's make backend, but they still represent a significant improvement over
what was available in abuild 1.0.

You might wonder why you should consider using abuild's Groovy backend when other Groovy/ant-based build sys-
tems, such as Gant [http://gant.codehaus.org] and Gradle [http://www.gradle.org] are available. You may wonder
why you should use abuild for Java at all when you could get transitive dependency management with Ivy [http://
ant.apache.org/ivy/] or Maven [http://maven.apache.org/]. Surely those tools may be the right tools in some environ-
ments, particularly for Java-only projects, but, at least at their current stage of development, they lack the same cross-
platform/cross-language interoperability support offered by abuild, even as they offer more mature rules for building
Java code and better integration with other “standard” Java build environments. But this is the abuild manual, not a
comparison of various Java build options, so, without further delay, we'll continue with our description of abuild's
Groovy backend.

19.1. A Crash Course in Groovy
Although you don't really have to understand Groovy to use the above-described features of the Groovy backend,
if you want to get the most out of abuild's Groovy backend, it helps to have a decent understanding of the Groovy
language [http://groovy.codehaus.org], and you will certainly need to understand at least some basic Groovy to take
advantage of more advanced customization or to write your own rules. If you are already comfortable with Groovy,
feel free to skip this section.

Providing a tutorial on Groovy would be out of scope for this manual. However, there are a few Groovy idioms
that abuild (as well as many other Groovy-based systems) make heavy use of, and understanding at least that much,
particularly if you are already a Java programmer, will certainly help you to make sense of what is going on here.

Closures
A closure is an anonymous block of code that is treated as an object. When a closure is run, variables and functions
that it uses are generally resolved in the context in which the closure was defined rather than in the context in
which it is run. You can't get very far in Groovy without having a basic understanding of closures. You don't have
to understand closures to use abuild's Groovy backend, but you certainly have to understand them, at least at some
level, when you get to the point of writing custom rules.

Although a closure is often written as a literal block of code enclosed in curly braces, Groovy allows you to treat
any function as a closure. In particular, Groovy allows you take a particular method call of a specific instance
of an object and treat that method call as a closure. This feature is sometimes known as bound methods and is

1 For limited documentation on the old framework, see Appendix K, The Deprecated XML-based Ant Backend, page 331.

http://gant.codehaus.org
http://gant.codehaus.org
http://www.gradle.org
http://www.gradle.org
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://ant.apache.org/ivy/
http://maven.apache.org/
http://maven.apache.org/
http://groovy.codehaus.org
http://groovy.codehaus.org
http://groovy.codehaus.org

The Groovy Backend

104

present in many modern programming languages. The syntax for creating a closure from a method in Groovy is
object.&methodName. Abuild's Groovy backend uses this construct heavily in its rule code.

Automatic Bean Formation
In Groovy, calling object.field is just “syntactic sugar” for object.getField(). In other words,
if an object has a method called getField, then accessing object.field is exactly the same as
calling object.getField(). It is important to understand this when looking at Groovy code that
is interfacing with the Java standard library. For example, object.class.name is the same as
object.getClass().getName(), which may not be obvious to a Java programmer with no prior Groovy
experience.

List and Map Literals
Groovy supports lists and maps that are similar to those in Java. However, Groovy has a syntax for list and map
literals that can appear directly in code. We make heavy use of these in the abuild Groovy backend, and in fact,
you will find heavy use of these in just about any Groovy code.

The syntax for a list literal is [val1, val2, val3, ...]. The syntax for a map literal is ['key1':
value1, 'key2': value2, ...].

The << Operator
Groovy overloads the left-shift operator (<<) for appending to lists. For example, this code:

def var = []
var << 1
var << 2

would result in a list whose value is [1, 2]. The << operator, like all operators in Groovy, is just a shortcut
for calling a specific corresponding method. This method returns the object being appended. So the above code
could also have been written as

def var = []
var << 1 << 2

We use this syntax sometimes to append maps to lists of maps as it's a little cleaner (in the author's opinion) than
explicitly coding lists of maps.

Named Parameters
Under the covers, Groovy runs on top of the Java virtual machine. As such, Groovy function calls are really just
like Java function calls: a function may take a specific number of arguments that appear in a specific order. The
Java language doesn't support named parameters, so there is no encoding of them in Java byte code. Yet Groovy
appears to support named parameters, so how does this work?

With Groovy, you often see function calls that look like they have named parameters. For example, the following
would be a valid function call in Groovy:

f('param1': value1, other, 'param2': value2)

You can even mix what look like named parameters with regular parameters as in the above example. What
Groovy does when it sees named parameters is that it gathers them all up in a single map and then passes that map
to the function as the first argument. As such, the above call is exactly equivalent to the following:

f(['param1': value1, 'param2': value2], other)

The Groovy Backend

105

Trailing Closures
In Groovy, it is common to see something that looks like a function call, or even bare function name, followed
by a block of code in curly braces. In fact, this construct is used in virtually every Abuild.groovy file. This points
to another special bit of Groovy syntax surrounding function calls. Specifically, if a function call is immediate-
ly followed by one or more closures, those closures are passed to the function at the end of its parameter list.
Additionally, if a function is being called with no arguments prior to the trailing closure, the parentheses can be
omitted. So the following blocks of code are exactly equivalent:

f({println 'hello'})
f() {
 println 'hello'
}
f {
 println 'hello'
}

In all three cases, the function f is being called with a single argument, and that argument is a closure that, when
run, prints the string hello followed by a newline.

Closure-based Iteration
Iteration over lists and maps is so common that Groovy provides convenience methods for calling a closure on each
element of a list or map. In Groovy, a closure with one parameter can access the single parameter anonymously
with through the variable it. If there are multiple parameters (or zero parameters), they have to be named and
followed by -> to separate them from the body of the closure.

If you have a list in a variable called items, the following code:

items.each { f(it) }

would call the function f for each argument of the list. If have a map in a variable called table, this code:

table.each { k, v -> f(k, v) }

would call the function f on each key and value in the map. All that's happening here is that Groovy is calling the
each method of the list and map objects with a closure passed to it as the last argument, which should hopefully
be clear now that you've seen the trailing closure feature.

Safe Dereference
How often have you found yourself writing code where you first check whether a variable is null and, only if it
isn't null, access it? Groovy offers a shortcut for this. This code:

obj?.method()

is the same as

if (obj != null)
{
 obj.method()
}

but it's a lot easier to write!

These features are often combined. In fact, this is extremely common when using Groovy's AntBuilder, which abuild
uses very heavily. So if you see something like this:

The Groovy Backend

106

ant.javac('destdir': classesDir, 'classpath': classPath) {
 srcdirs.each { dir -> src('path' : dir) }
 compilerargs?.each { arg -> compilerarg('value' : arg) }
 includes?.each { include('name' : it) }
 excludes?.each { exclude('name' : it) }
}

you may be able to a little bit better of an idea of what's going on!

There's a lot more to Groovy than in this tiny crash course. You are encouraged to seek out Groovy documentation
or get a good book on the language. But hopefully this should be enough to get you through the examples in this
documentation.

19.2. The Abuild.groovy File
To use abuild's Groovy backend, you must create a build file called Abuild.groovy. We've already seen a few exam-
ples of Abuild.groovy files in Section 3.6, “Building a Java Library”, page 15 and Section 3.7, “Building a Java Pro-
gram”, page 16.

19.2.1. Parameter Blocks

Abuild's Groovy backend loads each build item's Abuild.groovy file in a private context such that no two build items'
build files can interfere with each other. Although the Abuild.groovy file is a full-fledged Groovy script which could,
in principle, run arbitrary Groovy code, the intent is that your Abuild.groovy file do nothing other than set abuild
parameters. Abuild parameters are similar to make variables or ant properties. Unlike make variables or ant parameters,
they are a construct implemented by abuild's Groovy backend itself rather than being something more fundamental to
Groovy. 2 Parameters look like ant or Java properties, but unlike ant properties, their values can be modified. Parameter
names are typically divided into period-separated components, like abuild.rules or java.dir.dist.

The most common way to set abuild parameters is by assigning to them inside of a parameters block. A parameters
block in Abuild.groovy looks something like this:

parameters {
 java.jarName = 'example.jar'
 abuild.rules = ['java', 'groovy']
}

Within a parameters block, things that look like variables are treated as abuild parameters instead. (For a discussion
of how this works, see Section 33.9, “Parameter Block Implementation”, page 222.) On the left hand side of an
assignment, abuild automatically treats the assignment as an assignment to a parameter. On the right hand side, you
have to wrap the parameter name in a call to resolve. You can also pass the names of interface variables to resolve. For
example, the following would give the parameter item.name the value of the interface variable ABUILD_ITEM_NAME:

parameters {
 item.name = resolve(ABUILD_ITEM_NAME)
}

If the interface variable contains characters that make it invalid as a Groovy identifier, you can quote it, as in the
following:

2 In fact, abuild parameters are nothing more than keys in a map of parameter values.

The Groovy Backend

107

parameters {
 item.parameter = resolve('some-build-item.archive-name')
}

In addition to assigning to parameters, you can append to them by using the << operator, which is the same operator
Groovy uses to append to lists. The following three parameter blocks are equivalent:

parameters {
 abuild.rules = ['java', 'groovy']
}
parameters {
 abuild.rules << 'java' << 'groovy'
}
parameters {
 abuild.rules << 'java'
 abuild.rules << 'groovy'
}

It is even possible to delete parameters like this:

parameters {
 delete some.parameter
}

though there should seldom if ever be a need to do this.

Most of the time, working with parameters and parameter blocks is straightforward, but there are some subtleties
that may pop up in rare instances. For a full discussion, refer to Section 19.7.3, “Parameters, Interface Variables, and
Definitions”, page 114.

19.2.2. Selecting Rules
In a typical Abuild.groovy file, you will be assigning to some rule-specific parameters and to at least one the two pa-
rameters provided directly by abuild. The two abuild parameters are abuild.rules and abuild.localRules. The parameter
abuild.rules contains a list of rule sets that will be providing code to generate targets from sources. The vast majority of
Groovy-based build items will set the abuild.rules parameter. In rare instances, a build item may need to provide addi-
tional rules for some one-off purpose. In this case, the parameter abuild.localRules may be set to a list of files, relative
to the directory containing the Abuild.groovy file, that implement the local rules. Note that abuild.rules contains the
names of rule set implementations while abuild.localRules contains the names of files that contain rule implements.
(This makes these parameters consistent with the variables RULES and LOCAL_RULES used by the make backend.)
Abuild requires that at least one of abuild.rules and abuild.localRules be set in every Abuild.groovy file.

19.3. Directory Structure for Java Builds
Abuild's Groovy backend provides a default directory structure that it uses by convention when performing Java builds.
It is possible to override all of these paths by setting specific parameters as described in Section 19.6, “Advanced
Customization of Java Rules”, page 112. In this section, we just provide a quick overview of the default paths.

All paths are relative to the build item directory. Note that abuild-java is the abuild output directory for Java builds.
All directories under abuild-java are created automatically if needed. All other directories are optional: abuild will
use them if they exist but will not complain if they are missing. Note that the clean target removes the entire abuild
output directory.

The Groovy Backend

108

Table 19.1. Default Java Directory Structure

Directory Purpose

src

—/java hand-coded Java sources

—/resources hand-created additional files to be packaged into the root
of the item's JAR or EAR files or into the WEB-INF/
classes directories of the item's WAR files

—/conf not used directly by abuild; a good place to put other
configuration files such as application.xml, that are ref-
erenced by specific parameters

—/—/META-INF hand-created files to go into the item's archives' META-
INF directories

—/web

—/—/content hand-created content to go into the root of the item's
WAR files

—/—/WEB-INF hand-created content to go into the item's WAR files'
WEB-INF directories

abuild-java the abuild output directory; all contents below here are
generated

—/src

—/—/java generated Java sources; treated identically to src/java

—/—/resources generated additional files; treated identically to src/re-
sources

—/—/conf not used directly by abuild; a good place to put generated
versions of whatever you would put in src/conf

—/—/—/META-INF generated META-INF files; treated identically to src/
conf/META-INF

—/—/web

—/—/—/content generated web content; treated identically to src/web/
content

—/—/—/WEB-INF generated WEB-INF; treated identically to src/web/
WEB-INF

—/dist the location where abuild places generated archives

—/doc the location where abuild places Javadoc documentation

—/junit the location where abuild writes JUnit test results

—/—/html the location where abuild writes HTML reports generat-
ed from JUnit test results

19.4. Class Paths and Class Path Variables
In Section 17.5.3, “Interface Variables for Java Items”, page 93, we discuss the three classpath interface variables.
These are as follows, described here from the perspective of the item that is using them:

• abuild.classpath: archives your item compiles with and probably packages in higher-level archives

The Groovy Backend

109

• abuild.classpath.external: archives your item compiles with but probably doesn't package in higher-level archives

• abuild.classpath.manifest: archives that should go in the your the manifest classpath of archives you generate

Within the context of a Java build, there are four different types of classpath-like entities. We describe them here and
show how they are related to the three classpath interface variables:

• Compile-time classpath: used as the classpath attribute to the javac task. Its default value is the combination of the
values of abuild.classpath and abuild.classpath.external.

• Manifest classpath: used as Manifest-Classpath attribute in the manifest of any JAR files that you create. Its default
value is the value of abuild.classpath.manifest.

• Archive to package: the list of archives that get included in higher-level archives such as EAR files. Its default value
is the value of abuild.classpath.

• Runtime class path: the classpath used by wrapper scripts and test drivers. Its default value is the values of
abuild.classpath and abuild.classpath.external plus any JAR files created by the current build item.

Each of the above classpaths is computed inside abuild's java rules. In each case, the computed value is used as a
default value for attributes to the various targets that use them.

To override the value of one of these classpaths for a specific build item, there are two approaches. One is to effectively
replace the interface variable with a parameter. Since abuild uses resolve internally to retrieve these values, constructs
such as this:

parameters {
 abuild.classpath.manifest << 'something-else.jar'
}

or

parameters {
 abuild.classpath.manifest =
 resolve(abuild.classpath.manifest).grep {
 it != 'something-else.jar'
 }
}

can be used to change the underlying variables used to construct the various class paths. To understand why this works,
please refer to Section 19.7.3, “Parameters, Interface Variables, and Definitions”, page 114.

The other way these can be overridden is to specifically override the classpath that is used by each target. This can
be done by using control parameters, as discussed in Section 19.6, “Advanced Customization of Java Rules”, page
112. Each target's attributes map contains a key that can be set to supply a new value for whichever classpaths
need to be changed.

19.5. Basic Java Rules Functionality
Virtually all Java-based build items will set the abuild.rules parameter to the value 'java' or to a list that includes
that value. The java rules are quite flexible and give you considerable leeway on how things should work. In this
section, we will describe only the most basic use of the java rules. When using the rules in this way, you control
everything that you are going to build by setting a few simple parameters, and you set up your build item's directory
structure according to abuild's conventions. In later sections, we will discuss other more general ways to customize
or override abuild's default behavior.

The Groovy Backend

110

The java rules perform a variety of functions, most of which must be enabled by setting one or more parameters. With
appropriate parameters, the java rules can perform the following tasks:

• Compiling Java source code into class files

• Generating Javadoc documentation

• Creating JAR files populated by class files and other arbitrary contents

• Creating simple wrapper scripts that run executable JAR files in the context of the source tree; these wrapper scripts
are useful for testing within the source tree, but not for installation or deployment

• Creating WAR files that contain locally produced files as well as signed JAR files or other content

• Producing higher-level JAR-like archives, such as RAR files, that may contain other JAR files

• Creating EAR files that may contain locally produced files including other archives as well as other content

We will discuss each of these briefly in turn. In the discussions below, we describe the default behavior of each of
these capabilities. Keep in mind that virtually every aspect of them, including all the default paths and file locations,
can be customized. We will be describing how to customize and override the default behavior in later sections.

The sections below include prose descriptions of the default locations of files. To see all this presented in one place,
please refer to Section 19.3, “Directory Structure for Java Builds”, page 107.

Note

At this time, this manual does not include any examples of creating high-level archives or signed JAR files.
To see examples, you may refer to abuild's test suite, which fully exercises all available functionality. The
most comprehensive example that uses the Groovy framework is the code generator example (Section 22.3,
“Code Generator Example for Groovy”, page 132), which also illustrates a few other aspects of the Groovy
framework.

19.5.1. Compiling Java Source Code
By default, Java compilation involves compiling with javac every .java file found in src/java and writing the output
files into abuild-java/classes. In addition to src/java, abuild also looks for Java sources in abuild-java/src/java, which
is where automatic code generators are expected to put generated Java sources. You may add additional directories
in which abuild will search for .java files to compile by adding the names of the directories to the java.dir.extraSrc
parameter.

By default, abuild invokes javac with debug and deprecation turned on and with the additional arguments -Xlint
and -Xlint:-path.

You may customize Java compilation in several ways including changing the locations in which abuild finds source
files or writes output files, changing the compile-time classpath, or changing the attributes passed to the ant javac task.
For details, see Section 19.6, “Advanced Customization of Java Rules”, page 112.

19.5.2. Building Basic Jar Files
If the java.jarName parameter is set, abuild will create a JAR file with the indicated name. For an example of this, see
Section 3.6, “Building a Java Library”, page 15. By default, you are expected to put any hand-created files other than
class files in src/resources. Build items that automatically generate additional files to include in the JAR file should
place those files in abuild-java/src/resources. All files in src/resources, abuild-java/classes, and abuild-java/src/re-
sources, subject to the usual ant exclusions (version control directories, editor backup files, etc.), will be included in

The Groovy Backend

111

the JAR file. You may specify additional directories whose contents should be included by appending the names of
the directories to the parameter java.dir.extraResources. Additionally, any files in the src/conf/META-INF and abuild-
java/src/conf/META-INF directories will be included in the META-INF directory of the JAR file. You can specify
additional META-INF directories by setting the parameter java.dir.extraMetainf.

As always, all default path names may be overridden. It is also possible to provide additional arguments to the jar
task, to set additional keys in the manifest, and to create multiple JAR targets. For details, see Section 19.6, “Advanced
Customization of Java Rules”, page 112.

19.5.3. Wrapper Scripts
If the java.wrapperName and java.mainClass parameters are set in addition to the java.jarName parameter, abuild
will generate a simple wrapper script that will invoke java on the JAR file using the specified main class and with the
calculated or specified runtime class path. For an example of this, see Section 3.7, “Building a Java Program”, page
16. The wrapper script is placed directly in the abuild output directory.

It is possible to have abuild generate multiple wrapper scripts that invoke the application using different main classes.
For details, see Section 19.6, “Advanced Customization of Java Rules”, page 112. For an example, see (Section 22.4,
“Multiple Wrapper Scripts”, page 140).

19.5.4. Testing with JUnit
If you have implemented JUnit tests suites, you can run them using either the test or batchtest nested tasks of the
junit ant task. If you have a single test suite that you want to run, you can set the java.junitTestsuite parameter to
the name of the class that implements the test suite. If you want to run multiple test suites using the batchtest task,
you can set the parameter java.junitBatchIncludes and optionally also java.junitBatchExcludes to patterns that will be
matched against the classes in abuild-java/classes. You may provide values for all of these if you wish, in which case
abuild will run all test specified. Abuild will write XML test output to the abuild-java/junit directory and, whether
the tests pass or fail, will also generate an HTML report in abuild-java/junit/html. By default, if the test fails, the
“build” of the test target for the item will fail. This and other behavior can be overridden; see Section 19.6, “Advanced
Customization of Java Rules”, page 112.

19.5.5. JAR Signing
When creating WAR files, EAR files, or other high-level archives that may contain other JAR files, JAR signing is
available by default. In order for abuild to sign any JAR files, you must set the java.sign.alias and java.sign.storepass
parameters, which correspond to the mandatory alias and storepass attributes of the signjar ant task. You will usually
also want to set the java.sign.keystore and java.sign.keypass parameters, corresponding to the keystore and keypass
attributes to the signjar task. In most cases, you will set these parameters in one place. This place can be either a plugin
or a single build item that all build items that sign JARs will depend on. It's okay to put these in a plugin if all JARs
in your project will be signed in the same way.

Setting the above parameters is necessary in order to have any JARs be signed, but it is not sufficient; you must also
indicate which JARs are to be signed, which you will generally do in the higher-level archive build item that actually
does the signing. The usual way to do this is to set the java.jarsToSign parameter to a list of paths to JAR files that
should be signed. Although these JARs are typically created by other build items, you should never have your build
item's Abuild.groovy file refer to JARs created by other build items directly by path even using a relative path. Instead,
you should always have the build item that creates the JAR file provide the path to the JAR file with an abuild interface
variable, and you should add that to the java.jarsToSign parameter by calling abuild.resolve on the interface variable.
This way, your build item will continue to work even if the one that provides the JAR file moves or is resolved in
a backing area.

It is also possible to arrange for JARs to be signed by having them appear in the abuild-java/signed-jars directory.
This case can be useful if the same build item that is signing the JAR files is also creating them, either because it is

The Groovy Backend

112

actually compiling Java code itself or because it is repackaging other JAR files. However, if you find yourself writing
code that just copies other JAR files into abuild-java/signed-jars, then you should probably be assigning the paths to
the those JAR files to the java.jarsToSign parameter instead.

Whichever method you use, or even if you use both methods together, the signed JARs will be placed in the abuild-
java/signed-jars directory. Since abuild will sign unsigned JARs in that directory, abuild invokes the signjar task
with lazy JAR signing by default. If it didn't, then every time you invoked abuild, it would re-sign all JAR files in
that directory even if they were already signed. Lazy JAR signing allows abuild to avoid repeatedly signing the same
JARs, which makes it possible to have abuild do nothing if invoked on an area that is fully built. (In other words,
this allows builds to be idempotent.) If you have a reason not to use lazy JAR signing, it is possible to disable it and
override the JAR signing behavior to avoid re-signing the JARs, but this should seldom if ever be required. For details
on the full range of customization opportunities available, please see Section 19.6, “Advanced Customization of Java
Rules”, page 112.

19.5.6. WAR Files
If you wish to build a WAR file, you must set the java.warname parameter to the name of the WAR file and the
java.webxml parameter to the path to the web.xml file for that WAR. The java.webxml parameter may be set to a
relative path, in which case it is resolved relative to the build item's top-level directory (the directory containing
Abuild.groovy). By default, abuild will package into WEB-INF/classes the contents of src/resources, abuild-java/class-
es, abuild-java/src/resources and any additional directories named in java.dir.extraResources. It will also package
at the root of the WAR file any files in src/web/content, abuild-java/src/web/content, and any directories named in
java.dir.extraWebContent. It will populate META-INF exactly as it does for JAR files. The WEB-INF directory will be
populated from src/web/WEB-INF, abuild-java/src/web/WEB-INF, and any directories named in java.dir.extraWebinf.
For additional information about creating WAR files, please see Section 19.6, “Advanced Customization of Java
Rules”, page 112.

19.5.7. High Level Archives
Abuild includes default rules for creation of high-level archives, in addition to WAR and EAR files, that may
contain other JAR files, including signed JARs. To create a JAR-like high-level archive, set the parameter
java.highLevelArchiveName to the name of the archive to be created. By default, the archive is populated exactly as a
regular JAR file is, including pulling files from all the same places. In addition, by default, high-level archives contain
all archives in the package class path at the root of the archive. The list of additional files to package in the high-
level archive can be customized along with all the things that can be customized for regular JAR files. For details, see
Section 19.6, “Advanced Customization of Java Rules”, page 112.

19.5.8. EAR Files
To create an EAR file, you must set the java.earName and java.appxml parameters. EAR files are populated with the
same files from the same places as high-level JAR-like archives, including packaging all items from the package class
path at the root of the EAR file, except that they to not contain files from abuild-java/classes. For additional information
about customizing creation of EAR files, see Section 19.6, “Advanced Customization of Java Rules”, page 112.

19.6. Advanced Customization of Java Rules
Abuild's Java rules can be customized using a layered approach. At the most basic level, you can set specific parameters
that tell abuild how to run its normal rules. As you need more advanced functionality, you can override the locations
that abuild uses for various types of files, pass additional arguments to various underlying ant tasks, cause targets to
be run multiple times, or even supply your own Groovy closures to be run for specific tasks. This is also described in
abuild's built-in help for the Java rules. The help text is included in this document as well; see Section E.8, “abuild
--help rules rule:java”, page 277.

The Groovy Backend

113

19.7. The Abuild Groovy Environment
The Abuild.groovy file along with all rules implementation files are loaded as scripts by the Groovy backend. We have
already discussed the parameters closure that is available within the Abuild.groovy file. This closure is provided by
being included in the binding, which is a mechanism used by Groovy to communicate with embedded scripts. Here
we discuss the remainder of the Groovy environment used by abuild

19.7.1. The Binding
There are three variables provided through the binding to any Groovy script that abuild loads:

abuild
An instance of the org.abuild.groovy.BuildState object, which holds onto all information about the state of
the current build. This includes information about parameters, targets, and other things as well. We discuss the
interface of this object in Section 19.10.1, “Interface to the abuild Object”, page 115, though most build items
that don't implement any of their own rules will find their interaction with it limited to calling abuild.resolve if
they have any interaction with it at all.

ant
An instance of a Groovy AntBuilder object set up with an ant Project specific for abuild. We discuss the ant
project in more detail in Section 19.7.2, “The Ant Project”, page 113.

parameters
A closure that provides an environment for convenient setting of parameters. We discussed this above in Sec-
tion 19.2.1, “Parameter Blocks”, page 106.

19.7.2. The Ant Project
Abuild creates a fresh ant project for each build item that it builds. No information is passed between build items
through the ant project. The only mechanism for passing information between abuild build items is the interface system.
This barrier is critical to abuild's scalability. It also results in using the same mechanism to pass information between
build items regardless of whether the build items use the same backend, which is important for support true cross-
language development.

The primary mechanism for passing information between a build item and the rules used to build it is through setting
and resolving parameters, but abuild also provides some information through ant properties. Specifically, when you
define a variable on abuild's command line, that variable becomes available as an ant property in addition to being
visible to resolve in abuild's parameter blocks (or to abuild.resolve from anywhere in the abuild Groovy environment). 3

Additionally, abuild will set the project's logger and log level based on how it was invoked, and abuild will also set
the basedir property to the output directory of the current build item. Note that since all Java builds are running in one
JVM, abuild cannot change the current directory. All well-behaved ant tasks are supposed to resolve relative paths
to basedir anyway though, so this should generally not matter. If you find builds failing with odd messages about
missing files or directories below where you happened to start abuild, it may be because of relative paths being passed
to incorrectly implemented ant tasks. In this case, you can usually just prepend ${basedir}/ to the relative path
you are providing as an attribute.

Note that, although abuild makes full use of ant tasks through the ant project and the ant builder, abuild does not use
ant's target facility. Instead, it defines its own with target bodies being provided by Groovy closures. This provides
much greater flexibility and ease of implementation.

3 Truth be told, the primary reason for this is that the same ant project is passed to the Groovy backend as to the deprecated xml-based ant backend,
for which properties are the only useful way of sending in information. However, setting these properties certainly doesn't hurt, and it might even
help, so we will continue to do it.

The Groovy Backend

114

19.7.3. Parameters, Interface Variables, and Definitions
We have discussed how to set and resolve parameters within an Abuild.groovy file, but we have only just glossed over
interface variables and variable definitions passed on abuild's command line. Most of the time, you don't have to be
concerned about the distinction, but sometimes it might be important. If the explanation in this section doesn't make
sense to you, just skip it for now. You may never need to understand the distinctions made here, but if something isn't
working the way you expect, you can always refer back to this section.

Abuild's groovy backend actually maintains three separate namespaces of variables: parameters, interface variables,
and definitions. Of these, the only ones you can actually modify from an Abuild.groovy file are parameters, so any
assignment made in a parameter block affects a parameter. However, calls to resolve have access to interface variables
and definitions. As a reminder, parameters are set explicitly in parameters blocks. Interface variables come from
abuild's interface system and are set in Abuild.interface files. Definitions are passed on abuild's command line through
arguments of the form VAR=value. When you resolve a variable with resolve, here is exactly what happens:

• If there is a definition of that variable that was passed on abuild's command line, return that value.

• Otherwise, if there is a parameter by the name, return the value of the parameter.

• Otherwise, if there is an interface variable by that name, return that value

• Otherwise, return null

When you append to a parameter in a parameter block (or by calling abuild.appendParameter), if there is no parameter
with the name of the variable that you are appending to, abuild will first try to initialize the parameter by calling
resolve. This means that if you initialize something as an interface variable and then append to it in a parameter block,
resolve will return a value that is the interface variable's value appended with the changes made in your parameter
block. However, since definitions take precedence over both interface variables and parameters, if you specify the
value of a variable on the command line, the affect of modifying a parameter by the same name will be ignored by
future calls to resolve. What this all means is that variables defined on the command line effectively override any
values specified in the interface or build files. This is equivalent to the behavior you would see with make or ant. 4

If the above explanation didn't make a lot of sense, don't worry about it. It's set up so that the Right Thing happens
most of the time without your having to worry about it.

19.8. Using QTest With the Groovy Backend
For simple QTest-based test suites, nothing unusual is required: just create your .test files in the qtest directory as
always. If you are using QTest's coverage system, you can assign the names of the source files containing coverage
calls to the TC_SRCS parameter, which abuild will automatically export to the environment. Abuild also automatically
exports TESTS, so you can pass it on the abuild command line (e.g. abuild TESTS="one two" to run one.test and
two.test) if you want to run a subset of your tests.

The easiest way to pass information from your build into your test suite is through environment variables. For example,
you may need to pass in the path of a configuration file or JAR file so that your test suite can find it. To do this,
you can create parameters containing those values and then append the names of the parameters to the qtest.export
parameter. For each value in qtest.export, an upper-case version of the variable name is exported to the environment
with the value returned by calling resolveAsString on that parameter. For example, if you had the following parameter
block in your Abuild.conf:

parameters {
 TEST_CONFIG = 'test_config.xml'

4 It is possible to get at the interface, definitions, and parameters directly through the abuild object, but you shouldn't do it. If you are in a situation
where you are depending on that behavior, you're probably doing something wrong.

The Groovy Backend

115

 qtest.export << 'TEST_CONFIG'
 // other standard parameters ...
}

your test suites would be able to reference $ENV{'TEST_CONFIG'} to retrieve the value test-config.xml.

19.9. Groovy Rules
The groovy rule set, available by setting abuild.rules to ['java', 'groovy'], adds the ability to build Groovy
code to the functionality of the java rules. The basic functionality is that all .groovy files in the src/groovy and abuild-
java/src/groovy directories are compiled to .class files and written to the abuild-java/classes directory. The order
in which Java and Groovy sources are compiled is determined by the order in which java and groovy are added to
abuild.rules, but you must include java if you include groovy. If you have a build item that builds both Java and
Groovy code, you should avoid having circular dependencies between your Java and Groovy code. If your Groovy
classes make calls into your Java code, list java in your abuild.rules parameter first. If your Java code makes calls to
your Groovy code, then include groovy first. For additional information on how to customize compilation of Groovy
code, refer to abuild's online help for the groovy rules. This help text is included in Section E.7, “abuild --help rules
rule:groovy”, page 277.

19.10. Additional Information for Rule Authors
The following sections describe Groovy interfaces of objects that are available to rule programmers.

19.10.1. Interface to the abuild Object
The abuild variable, provided in the Groovy binding to all scripts run in abuild, is the primary object that you will
interact with. Here we describe its intended public interface. 5

19.10.1.1. Accessing Parameters

These methods are used to access the values of definitions, parameters, and interface variables. They can be used either
in Abuild.groovy files or in custom rule code.

resolve('name',defaultValue)
If name represents a definition (specified with VAR=val on the command line), return the definition value. Oth-
erwise, if a parameter named name is a parameter, return the parameter value. Otherwise, if name is an interface
variable, return the value of the interface value. Otherwise, return defaultValue.

The implementation of this method is what is responsible for implementing the effect of command-line definitions
overriding parameter settings and interface variables, which gives the Groovy backend the same behavior as make
and ant.

resolve('name')
calls resolve('name', null)

resolveAsString('name', defaultValue)
If resolve('name', defaultValue) returns other than null or a string, fail. Otherwise, return value as type String.

resolveAsString('name')
calls resolveAsString('name', null)

5 Groovy 1.x does not enforce access control on method or field invocations.

The Groovy Backend

116

resolveAsList('name', defaultValue)
If resolve('name', defaultValue) returns a list, return that value. Otherwise, return a list containing that value. This
makes it convenient to deal with parameters whose values may contain a single value or a list of values without
having to handle the special case in the target.

19.10.1.2. Modifying Parameters

Most of the time, you will set and modify parameters inside a parameter block (Section 19.2.1, “Parameter
Blocks”, page 106). Setting and modifying parameters inside a parameter block is essentially just “syntactic sugar”
for the underlying interface, which is described here. This interface is available if you need to modify parameters from
somewhere other than a parameter block.

setParameter('name', value)
Sets parameter name to value, replacing any previous value that may have been set.

appendParameter('name', value)
If parameter name has been previously set with setParameter (and not subsequently deleted), this is an error.
Otherwise, makes the value of the parameter a list and appends value to it.

deleteParameter('name')
Removes any previous value for parameter name. Note that if an interface variable by the same name exists,
deleting the parameter will re-expose the value of the interface variable to calls to resolve.

19.10.1.3. Build Environment

The following methods supply information about the build environment. These are most often used from within rule
code, but they can also be useful in Abuild.groovy for setting parameter values.

buildDirectory
A File object containing the build directory (the abuild output directory)

sourceDirectory
A File object containing the source directory (the build item directory)

itemPaths[item]
Contains The full path to the given build item. This is intended primarily for rule code to get the location of the
build item providing the rule code (i.e., for build items to get their own paths) or, in some cases, paths of items they
directly control or contain. Paths are only available for items in the dependency chain of the current build item.

Warning

You should not use itemPaths to find the location of arbitrary build items. If you need information about
where something is in a build item, the build item in question should provide that information through
an interface variable.

19.10.1.4. Target Configuration

These methods are used to create or modify targets. You would call these methods from custom rule code. They would
not be called from Abuild.groovy.

configureTarget('name', named parameters) { closure }
Registers target name; i.e., causes it to exist if it does not already exist.

If a closure is provided, adds it to the list of closures for target name.

The Groovy Backend

117

If the deps named parameter is specified, its value must be a string or a list of strings representing dependencies.
Each dependency is added as a dependency of target name.

If the replaceClosures named parameter is specified, its value must be a boolean. If true, any previous closures
associated with name are removed before adding any newly specified closure.

configureTarget('name')
Calls the three-argument configureTarget with no named parameters or closure body; i.e., just causes the target
to exist.

addTarget('name')
Synonym for configureTarget('name')

configureTarget('name', named parameters)
Calls the three-argument configureTarget with no closure body

addTargetDependencies('name', ['dep1', 'dep2'])
Calls configureTarget('name', 'deps': ['dep1', 'dep2']); i.e., creates the target and adds to its dependency list

configureTarget('name') { closure }
Calls three-argument configureTarget with no named parameters

addTargetClosure('name') { closure }
Synonym for configureTarget('name') { closure }

19.10.1.5. Build Support

The following methods are provided for use in custom rules.

runActions(String targetParameter, Closure defaultAction, Map defaultAttributes)
targetParameter is the name of a parameter that, if defined, resolves to a list whose elements are either maps or
closures. If not defined, it is treated as if its value were a list containing an empty map.

For each element in the resulting list, if it is a closure, call it. If it is a map, then expand the map by copying entries
from defaultAttributes for keys that are not present in the map. Then call defaultAttributes on the resulting map.

For an example of runActions, see Section 22.3, “Code Generator Example for Groovy”, page 132.

fail(String message)
Causes the build to fail immediately by throwing an instance of AbuildBuildFailure.

error(String message)
Issues an error message and continues to the end of the closure. After the closure finishes, the build is considered
to have failed, so unless -k has been specified, no additional closures will be called.

runTarget(target)
If target has not yet been run, runs target preceded by its full dependency chain. No target is ever run more
than once.

It is seldom necessary to call runTarget. It is generally better to let targets get run automatically through the
dependency chain, though there are some instances in which it might make sense to use this method. For example,
abuild uses it internally to have the check and test targets depend on all and call test-only, making it possible
for test-only to provide test functionality without have any of its own dependencies. Without this facility, it
would be necessary to implement the test functionality multiple times as is the case with the make backend. The
runTarget method gives this Groovy-based build framework capability beyond what can be done with make's
target framework.

The Groovy Backend

118

runTargets([target, ...])
Runs each target specified in the order given subject to the constraints that no target is run more than once and
that no target is run before all of its dependencies have been run.

19.10.2. Using org.abuild.groovy.Util
The org.abuild.groovy.Util class provides a small number of static methods and fields that may be useful to rule
authors. You can gain access to this class by importing it in your Groovy code.

• absToRel(path, basedir): convert path into a path relative to basedir. Most of the time, you need absolute paths,
which you can easily get from the File object, but sometimes you explicitly need a relative path, such as when
generating relative links. This method can help you with that task.

• inWindows: a field whose value is true if you are in a Windows environment. You should use this very sparingly as it
is possible to create platform-dependent output files in what is supposed to be a platform-independent directory. (See
Chapter 30, Best Practices, page 205 for a discussion.) However, sometimes when you are executing external
programs, it becomes necessary to do it different on a Windows system from a UNIX system. This field can help
you in those cases.

119

Chapter 20. Controlling and Processing
Abuild's Output
When examining the output of a large build, it is desirable to be able to scan the output of the build to look for errors
and warnings, and even to be able to associate specific lines of output with the build items that produced them. In
versions of abuild prior to 1.1.3, the output of a multithreaded build would consist of outputs from the builds of multiple
build items all interleaved with each other in arbitrary ways. This would make the output virtually impossible to parse
programmatically and even tricky for a human reader to fully understand. This chapter introduces features that help
to improve the usability of abuild's output. They are most useful for multithreaded builds, but in some cases, they can
help with single-threaded builds as well.

20.1. Introduction and Terminology
When abuild is used to perform a build, the overall build process consists of several phases: a check phase, a build
phase, and a summary phase. In the check phase, abuild reads and validates Abuild.conf files, performs integrity checks,
and so forth. In the build phase, abuild walks through the dependency graph and invokes backend processes to perform
the actual build steps. After the build phase is complete, the summary phase includes a summary of any failures as
well as an indication of elapsed time.

During the build phase, abuild invokes various backend programs to individually build each item on each of its plat-
forms. For purposes of discussion, we refer to those individual builds as jobs. A job always corresponds to a specific
build item being built on a specific platform.

When abuild invokes backend processes to do the actual build steps, it may either capture the output of the backend
processes or it may let the backend processes inherit standard input, standard output, and standard error from abuild
itself. We refer to the way in which abuild handles the output of its backend programs as its output mode.

20.2. Output Modes
 Each line of abuild's output can come from one of two sources: either abuild can generate the output itself, or the
output can come from one of the backends invoked on behalf of the individual job. The backend output would include
output from programs like make or ant or from anything they may invoke, such as compilers. Abuild can either capture
and process output from its backends, or it can just let the backends use the same standard input, output, and error as
abuild itself. We refer to what abuild does with its output as its output mode.

Abuild has three output modes: raw mode, interleaved mode, and buffered mode. In interleaved and buffered modes,
each job is run with standard input connected to the null device (/dev/null in UNIX environments and NUL in Windows
environments) and with standard output and standard error redirected to two separate pipes. Abuild reads from each
job's output and error pipes and process the results with its own logging facility.

In raw mode, abuild invokes backend processes without capturing their output. The backend processes just write to
the same standard output and standard error as abuild itself uses. Additionally, each backend has access to abuild's
standard input, which makes it possible for builds to prompt the user for input. For single-threaded builds, abuild's
default behavior is to run in the raw mode. This was the only output mode available in versions of abuild prior to 1.1.3.
To explicitly tell abuild to use raw output mode, specify the --raw-output flag when invoking abuild.

In interleaved mode, every job is assigned a specific job prefix, which is a fixed-length (possibly zero-filled) number
enclosed in square brackets. Every line of output generated by abuild itself, as well as every complete line generated by
the backend, is prefixed with the job prefix and then written to abuild's standard output or standard error as appropriate.
Messages generated by abuild are written immediately, and lines generated by the jobs' backends are written as soon
as they are received through the pipes. By using the job prefix, it is possible to unambiguously associate each line

Controlling and Pro-
cessing Abuild's Output

120

of abuild's output with the job (build item/platform) that generated it while still having each line of output written as
soon as it is generated.

For multithreaded builds, abuild runs in interleaved mode by default. Interleaved mode may be specifically requested
by passing the --interleaved-output flag to abuild. If --interleaved-output is specified for a single-threaded build,
abuild still runs the backend through pipes and disconnected from standard input, but it does not prepend each line
with a job prefix.

In buffered mode, rather than prefixing lines with a job prefix and outputting them as soon as they are available, abuild
saves up (buffers) all the output from a particular job and outputs it all at once when the job completes. This ensures
that, even for a multithreaded build, there is no interleaving of output from the builds of different build items. To
enable buffered output, invoke abuild with the --buffered-output flag.

20.3. Output Prefixes
When abuild invokes a backend, anything that the backend writes to its standard error will ultimately be written to
abuild's standard error, and likewise, anything the backend writes to standard output will end up on abuild's standard
output. This makes it possible to use shell redirection for standard output and standard error even when using inter-
leaved or buffered output modes. However, separation of standard output from standard error removes needed context
from error messages, so it's very useful to be able to distinguish output lines from error lines when looking at the
complete output of a build.

This can be achieved by setting a specific prefix to be prepended to all normal output lines and/or all error output lines.
To specify a prefix to be prepended to non-error output lines, use the --output-prefix=prefix option. To specify
a prefix to be prefix to error lines, use --error-prefix=prefix. If either of these options is specified and no output
mode has been explicitly selected, abuild will use interleaved output mode, even for single-threaded builds. If raw
output mode is explicitly selected, then any output or error prefix specifications will be ignored.

To make programmatic distinction of output lines from error lines in abuild's output, it is recommended that you
specify output and error prefixes of the same length. To make error messages stand out, you could run abuild with --
error-prefix='E ' --output-prefix=' ' (setting the output prefix to a number of spaces equal in length to
the size of the error prefix). This way, you could be sure that all lines as originally created by abuild or its backends
would start in the same column of the prefixed output, and that the first column of the prefixed output would contain
E for any error or warning. Another way to make error messages stand out would be to omit the error prefix entirely
and to specify an output prefix consisting of several space characters. This would cause all output lines to be indented,
making it easy to visually scan the build output for error messages. Note that this approach is not unambiguous because
you can't tell output lines from error lines that happen to start with several spaces. But for a human reader, it may be
more to your preference.

20.4. Parsing Output
A principal goal of adding output capture modes, output prefixes, and error prefixes to abuild was to make it easier to
programmatically parse abuild's output. By combining these features, it is possible to run abuild in batch mode and to
then unambiguously associate each line of abuild's output with the specific platform build of the specific build item
that was responsible for producing that line of output.

This section describes how such a parser could be implemented. You can also find an example parser implementation
in misc/parse-build-output relative to the top of your abuild distribution. (You can always find the top of the abuild
distribution by running abuild --print-abuild-top.) Since a Perl script is worth a thousand words (as they say), and
since the parse-build-output script is actually tested in abuild's test suite, it can serve as a tool for helping you under-
stand the details of abuild's output as well as being a great starting point for writing your own parser.

When abuild performs a build, the overall build consists of a check phase, a build phase, and a summary phase. In
the check phase, abuild reads and validates Abuild.conf files, performs integrity checks, and so forth. Under normal

Controlling and Pro-
cessing Abuild's Output

121

conditions, the check phase doesn't produce any output. If everything is in order at the end of the check phase, the
build phase begins. Immediately before beginning the build phase, abuild always outputs the line

abuild: build starting

Immediately following the build phase, abuild outputs the line

abuild: build complete

After the build phase is complete, abuild will output a summary of any failures that may have occurred as well as a
report of the total duration of the build. Parsers may use the build starting and build complete lines as
shown above to demarcate the build phase.

Within the build phase, output can be associated with a build item/platform pair (referred to here as a job) in the
following way:

• If output/error prefixes are specified, they always precede any job prefixes generated in interleaved mode. Strip
them from the beginning of each line. For this to work unambiguously, it is easiest if you use output and error
prefixes of the same length.

• In interleaved mode, all lines of output that are part of a build start with a number enclosed in square brackets and
followed by a single space. It is possible for some lines not to start this way, but such cases indicate an unusual error
or failure condition and are discussed later in this section.

• The first line of output from a build of a given item on a given platform will always start with

abuild: item-name (abuild-output-directory)

possibly followed by other text or punctuation. This will always be at the beginning of the line, after removing any
output, error, or job prefixes.

In interleaved mode, the above can be parsed the first time a line appears with a given job prefix to associate the
job prefix with the job.

In buffered mode, if a line that matches the above pattern is the first line to mention a specific item/platform pair, it
marks the beginning of output for that job, and all subsequent lines until a line that indicates the start of a different
job or the end of the build phase belong to that job.

There are a few exceptions to the above rules, but they only happen in cases of serious errors, and most parsers can
safely ignore them, as long as they treat unexpected input as general error conditions. (The sample parser actually
does take these cases into consideration.) Specifically, in both buffered and interleaved mode, certain major errors
from the java builder process, such as abnormal termination or “rogue output” from the java backend, can result in
asynchronous output from the java builder. 1 In interleaved builds with multiple threads, this output is prefixed with
the string “[JavaBuilder] ”. In buffered builds, it is not marked in any way, but will always appear between
the uninterrupted outputs from individual jobs. Most parsers would probably end up associating such output with
the job that had most recently completed, which would probably be wrong, but again, this is a very rare case. In a
single-threaded build, any rogue output from the java builder process would have to be related to the job that is in
progress, so the fact that it is unmarked doesn't pose any problems.

1 The java builder process may run multiple ant jobs in separate threads. It separates the output of different projects by creating each ant thread in a
separate thread group and associating a job identifier with the thread group. There are two ways the java builder process could create rogue output:
one is for an ant task to create a thread in a separate thread group and to have that thread write something to standard output or standard error, and
the other is for the java builder process itself to generate output. The former case is very unlikely, and the latter case would indicate a bug in the
java builder process, or a severe error such as failure of the JVM. Additionally, if the java builder process crashes, abuild will generate a message
that indicates this, and that message would not be associated with any build.

Controlling and Pro-
cessing Abuild's Output

122

In any case, any line of output that doesn't conform to the output that the parser expects should just be treated as a
general error from abuild. Such a line either indicates a serious problem with abuild itself (such as an assertion failure
or abnormal termination, probably indicating a bug in abuild or a system error) or a bug in the parser. Either way,
the output should be preserved.

20.5. Caveats and Subtleties of Output Capture
When abuild is running in one of the output capture modes (interleaved or buffered), it sends the outputs of any backend
build commands through a pair of pipes (one for standard output and one for standard error), reads from those pipes,
and sends the results through its own logging facility. This is usually harmless, but there are several minor issues that
can result:

• By default, standard output is usually block-buffered when output is written to a pipe, while standard error is usually
unbuffered. This means that, unless a program takes explicit action to flush (or unbuffer) its output, error messages
could appear in the output earlier than they otherwise would.

In practice, this is not expected to be a real problem. The reason is that it is extremely common to run builds with
output redirected to pipes or files—virtually all continuous integration packages or automated build scripts do this.
As such, virtually every commonly used build program already unbuffers its output. If you have been previously
running abuild with its output going to a pipe or into a file and haven't noticed any re-ordering of output and error,
then this issue is not likely to affect you.

• Even if the program that abuild invokes unbuffers its output, there's still a possibility that an individual error line may
appear earlier or later by a small distance than it would under ordinary conditions. The reason for this is that abuild
runs with standard output and standard error redirected through two separate pipes, which opens up the possibility of
a race condition. If, as abuild reads data from the two pipes, both pipes have data ready to be readb at the same time,
it is possible that abuild may read them in a different order from the order in which the pipes were written. There is
no solution to this problem as the information about when the pipes were written is simply not available. This is a
necessary cost of being able to distinguish standard output from standard error. In practice, it doesn't usually pose
any real problems—the misplaced error line will still be unambiguously associated with a specific job.

• As abuild reads the output and error pipes of the programs it invokes, it sends them to abuild's output or error streams
a line at a time. Although it is rare for a program to interleave standard output and standard error within a single line,
if it does, abuild will end up separating the text onto separate lines. This is an inevitable consequence of the fact that
abuild uses separate pipes for standard output and standard error, and it may actually be desirable in some instances.

• If the last line of output (or error) from a program that abuild invokes does not end with a newline, abuild will
append the string [no newline] followed by a newline to the line. This way all lines output by abuild end with
a newline. This ensures that abuild's own output is always anchored to the beginning of a line.

• If you interrupt abuild abnormally, for example, by hitting CTRL-C, abuild will let the operating system terminate
it in the usual way. This means that any partially read output from a pipe will be lost. In interleaved mode, any lost
output would generally be less than one line of output, though it could be more in the (unlikely)case of unbuffered
pipes. In buffered mode, all the output from any partially completed job will be lost. Note that no output is ever lost
if abuild is allowed to terminate on its own, unless it terminates as a result of an internal error or assertion failure,
which would never occur during routine operation. (An error in a specific build would never cause that to happen.)

• In buffered mode, since abuild doesn't output anything for a given item's build until that item's build is completed,
it is possible that abuild could sit for a long time without generating any output. Abuild gives no indication of in-
progress builds in buffered mode. If you need continuous feedback, use interleaved mode instead. (This is the main
reason that interleaved mode is the default for multithreaded builds even though buffered output is a little easier
to read.) Note that monitored mode (Chapter 31, Monitored Mode, page 212) can be combined with interleaved
or buffered mode, and that any output generated by monitored mode will be interleaved between item builds when
abuild is running in buffered mode. The sample parser makes no provisions for handling monitored mode output.

123

Chapter 21. Shared Libraries
In most cases, development efforts consisting of large amounts of dynamic and evolving code will be best served by
sticking with static libraries. Sometimes, however, it may be desirable or necessary to create shared library object files.
Abuild provides support for creating shared libraries on UNIX-based systems and DLLs on Windows systems. Note
that there are many ancillary concerns one must keep in mind when using shared libraries such as binary interface
compatibility. We touch lightly on these topics here, but a full discussion is out of scope for this document.

21.1. Building Shared Libraries
Building shared libraries with abuild is essentially identical to building static libraries. You still set up your shared
library targets using TARGETS_lib in Abuild.mk just as you would for static libraries. In order to tell abuild that a
library should be created as a shared library, you must set the additional variable SHLIB_libname where libname
is the name of the library target. The value of this variable consists of up to three numbers: major version, minor
version, and revision. These values tell potential users of your library when the library has changed. In general, you
should only modify these values when you are releasing versions of your library. During development, it's best to just
leave them alone or else your version numbers will get very large and you will lose all the advantages of using shared
libraries because of the need to relink everything all the time. Before a release, the major version number should be
incremented if the shared library has had interfaces removed or modified since the last release as those operations
would make old binaries that linked with the shared library fail to work with the new version. The minor version
should be incremented if no interfaces were changed or removed but new interfaces were added. This indicates that old
binaries would work with new libraries but new binaries may not work with old libraries. The revision number should
be incremented if any changes were made to the shared library code that did not affect the interfaces. This just tells the
user that the library has changed relative to another version that may be installed. Abuild will build executables that
link against shared libraries in such a way that they will fail to locate shared libraries whose major version numbers do
not match what they linked against. On UNIX platforms, the unversioned .so file and the .so file with only the major
version will be symbolic links to the fully versioned file name. (For example, if the actual shared library file were
libmoo.so.1.2.3, both libmoo.so and libmoo.so.1 would be symbolic links to it.) On Windows, the DLL will contain
the major version in its name (e.g., moo1.dll) while the companion static library remains unversioned.

Note that all the version number parameters are optional. Although they should always be used when creating actual
shared libraries that you intend to link programs against, they may be omitted in some other cases. For example, if
you are building a shared library object file that will be loaded at runtime or used as a plugin (such as with Java native
code), then it may be appropriate to omit the version numbers altogether. Even if the SHLIB_libname variable is set
to an empty string, abuild will still make a shared library instead of a static library. There is no way to create both a
shared and a static version of the same library at the same time, but it is possible to create a shared library that links
against a static library, which can be used to achieve the same effect in many circumstances.

When abuild builds shared libraries, it links them with any libraries in the LIBS variable. Although this is generally
the correct behavior for systems that support linking of shared libraries, it can cause unpleasant side effects if you mix
shared libraries with static libraries. When mixing shared libraries and static libraries, you should make sure that you
don't include two copies of the same symbols in more than one place (two shared libraries or a shared library and an
executable). Some systems handle this case acceptably, and others don't. Even in the best case, doing this is wasteful
and potentially confusing. If you need to prevent abuild from linking certain static libraries into shared libraries, you
may manually manipulate the contents of the LIBS variable in your Abuild.mk file. However, if you find that you
need to do this, you should probably rethink how you have your build configured. If you have static libraries that are
intended to be linked into shared libraries and then not used again for other purposes, you should reset the value of
LIBS in an after-build file that is included by your shared library build item's Abuild.interface file. This is discussed
in Section 21.2, “Shared Library Example”, page 124. 1

1 Versions of abuild prior to 1.0.3 behaved somewhat differently with respect to linking of shared libraries. See the changes for version 1.0.3 in
the release notes for details.

Shared Libraries

124

Abuild allows you to mix executables, shared libraries, and static libraries in the same build item. If you do this, all
executable targets will link with all shared and all static library targets, and all shared library targets will link with all
static library targets. The shared library targets will not link with each other. There are few, if any, good reasons to
mix shared and static library targets in the same build item, as doing so can only lead to confusion. When they are
mixed, it is probably appropriate to avoid adding the static libraries to LIBS in the Abuild.interface file.

In order to allow static libraries to be linked into shared libraries, abuild compiles all library object files as position-in-
dependent code. In some extremely rare cases, you may wish to avoid doing this as there is a very minor perfor-
mance cost to do it. If you wish to prevent a specific source file from being compiled as position-independent code,
set the variable NOPIC_filename to 1 where filename is the name of the source file. For example, the code
NOPIC_File.cc := 1 in your Abuild.mk file would prevent File.cc from being compiled as position-independent
code. Note that abuild does not check to make sure that code compiled in this way is not eventually linked into a
shared library. If you try to link non-position-independent code into a shared library, it may not link at all, or it may
cause undefined and hard-to-trace behavior. Use of this feature is not recommended unless absolutely needed to fix
some specific problem.

In order to run a program that is linked with shared libraries, the operating system will have to know where to find
the shared library. Abuild does not include library run path information in the executables as doing so is inherently
dangerous and non-portable. Even if abuild were to ignore this danger and include run path information, doing so
would potentially preclude the ability to swap out shared libraries at runtime, which is often the main reason for
wanting to use them in the first place. 2 Instead, you will need to make sure that, one way or another, the shared
libraries you need are located in a directory that is in your shared library path. On most UNIX systems, you can set
the LD_LIBRARY_PATH environment variable or install the shared libraries into certain system-defined locations. On
some systems (like Linux), you can also add directories to /etc/ld.so.conf. On Windows, you can colocate the DLL
files with the executables, or you can add the directories containing the DLL files to your path. When building DLLs
and executables with MSVC versions greater than or equal to .NET 2005, abuild automatically embeds the manifest
file in the DLL or executable with the mt command.

21.2. Shared Library Example
In doc/example/shared-library, you will find an example of using shared libraries. This example contains an executable
program and two implementations of the same interface, both provided in shared libraries. In the shared-library/prog
directory, you will find a simple program. Here is its Abuild.conf file:

shared-library/prog/Abuild.conf

name: prog
platform-types: native
deps: shared

2 The way the runtime loader behaves when shared library location information is compiled into an executable (as run path data) varies from system
to system. In most systems, if the shared library doesn't exist at the compiled-in location, the system will fall back to its standard rules for locating
shared libraries. In some systems, if the shared library does exist in the compiled-in location, that copy of the shared library will be used with
no way to override it. This may have undesired implications. For example, suppose you were to create an executable that linked with a shared
library and included run path information to the development version of the shared library. If you installed that executable and shared library in
standard locations on a system without a copy of the development environment, everything would work fine. Then suppose you put a development
environment on that system and built a newer version of the same shared library. Your installed executable would actually use the new development
copy of the library because it still has that path compiled into it! This is almost certainly not what would be intended. Abuild avoids this issue
entirely but not including support for specifying run path data.

For another approach to using shared libraries, look at libtool [http://www.gnu.org/software/libtool]. The libtool program gets around this problem
by creating wrappers around executables and shared libraries in the development tree. Although abuild is not integrated with libtool, such an
integration would be possible. The possibility of including support for libtool is actually one of the motivations behind allowing library object files
and non-library object files to have different extensions.

http://www.gnu.org/software/libtool
http://www.gnu.org/software/libtool

Shared Libraries

125

All it does is depend on the build item shared. This program doesn't have to do anything special in order to link
against the shared library. Here is the shared build item's Abuild.conf:

shared-library/shared/Abuild.conf

name: shared
child-dirs: include impl1 impl2
deps: shared.impl1

This is a pass-through build item that depends upon shared.impl1. Here is that build item's Abuild.conf:

shared-library/shared/impl1/Abuild.conf

name: shared.impl1
platform-types: native
deps: shared.include

This build item depends on an item called shared.include. Although, in general, putting your header files in a
separate build item is risky (see Chapter 30, Best Practices, page 205 for a discussion), in this case, we want to do
this so that we can have two separate implementations of this interface that reside in two different shared libraries. By
making this build item private to the shared build item name scope (see Section 6.3, “Build Item Name Scoping”, page
28), we effectively prevent outside build items from depending on it directly.

Here is the first implementation's Abuild.mk file:

shared-library/shared/impl1/Abuild.mk

TARGETS_lib := shared
SRCS_lib_shared := Shared.cc
SHLIB_shared := 1 2 3
RULES := ccxx

What we have here is a normal library Abuild.mk file except that we have set the variable SHLIB_shared to the value 1
2 3. This tells abuild to build the shared library target as a shared library instead of a static library using the version
information provided. On Windows, abuild will create shared1.dll along with shared1.exp and shared.lib. On UNIX,
it will create libshared.so.1.2.3 and will make libshared.so and libshared.so.1 symbolic links to it. UNIX executables
that link with -lshared will need to find libshared.so.1 in their library paths at runtime. Windows executables that link
with -lshared will need to find shared1.dll in their executable paths at runtime.

This shared library consists of a single file called Shared.cc. Here is the header file Shared.hh:

shared-library/shared/include/Shared.hh

#ifndef __SHARED_HH__
#define __SHARED_HH__

class Shared
{
 public:
#ifdef _WIN32
 __declspec(dllexport)
#endif

Shared Libraries

126

 static void hello();
};

#endif // __SHARED_HH__

This is the implementation of the interface:

shared-library/shared/impl1/Shared.cc

#include <Shared.hh>
#include <iostream>

void
Shared::hello()
{
 std::cout << "This is Shared implementation 1." << std::endl;
}

Notice the __declspec(dllexport) line that is there for Windows only. This is necessary to make Windows
export the function to a DLL. No such mechanism is required in a UNIX environment. Our Abuild.interface file looks
like a normal Abuild.interface file for libraries except that it omits an INCLUDES variable and declares a special mutex
variable:

shared-library/shared/impl1/Abuild.interface

Declare this "mutex" variable to prevent multiple implementations of
the "shared" interface from being in a build item's dependency chain
at the same time.
declare shared_MUTEX boolean

LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = shared

The INCLUDES variable is set in the shared.include build item's Abuild.interface instead:

shared-library/shared/include/Abuild.interface

INCLUDES = .

The mutex variable is a normal interface variable. We declare the same variable in the Abuild.interface file for
shared.impl2. Since abuild won't allow any interface variable to declared in more than one place, this effectively
prevents any one build item from simultaneously depending on both shared.impl1 and shared.impl2. Please note
that we have included the name of the public item, “shared” in the name of the mutex variable “shared_MUTEX“
to avoid namespace collisions with other unrelated build items.

Our second implementation is not in the dependency chain of our program. It resides in the impl2 directory. Here are
its Abuild.conf and Abuild.mk:

shared-library/shared/impl2/Abuild.conf

name: shared.impl2
child-dirs: static

Shared Libraries

127

platform-types: native
deps: shared.include shared.impl2.static

shared-library/shared/impl2/Abuild.mk

TARGETS_lib := shared
SRCS_lib_shared := Shared.cc
SHLIB_shared := 1 2 4
RULES := ccxx

You will notice in this case that this build item depends on a static library that its private to its own build item name
scope. This static library provides additional functions that are used within the shared library. Since the static library
is linked into the shared library and is not intended to provide any public interfaces, we want to avoid having the static
library appear on the link statement for executables that link with this shared library. To do that, we have to do some
extra work in our Abuild.interface file. Here are that file and the after-build file that it loads:

shared-library/shared/impl2/Abuild.interface

Declare this "mutex" variable to prevent multiple implementations of
the "shared" interface from being in a build item's dependency chain
at the same time.
declare shared_MUTEX boolean

LIBDIRS = $(ABUILD_OUTPUT_DIR)
after-build after.interface

shared-library/shared/impl2/after.interface

reset LIBS
LIBS = shared

Notice that we reset the LIBS variable and add our own library to it after the build has completed. This effectively
replaces everything that was previously in the LIBS variable with our library for items that depend on us. In this case,
the shared.impl2.static build item had added static to LIBS in its Abuild.interface file:

shared-library/shared/impl2/static/Abuild.interface

INCLUDES = .
LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = static

The effect of our reset that the static library added to LIBS there is available to shared.impl2 during its linking but
not available to those who depend on shared.impl2. 3

Finally, we can run our program. Remember that in order to run the program, you must explicitly add the directory
containing the shared library whose implementation you want to use to your LD_LIBRARY_PATH on UNIX or your
PATH on Windows. If you set this variable to include the output directory for shared.impl1, you will see this output:

3 What is going on here is a bit subtle. At first, resetting LIBS may seem quite drastic, but it really isn't. The reset statement only resets the state
of LIBS as it was at the time that this Abuild.interface file was processed. Any build item that depends on this item will still have all the other
items that were added to LIBS by other build items. To really understand how this works, please see Section 33.7, “Implementation of the Abuild
Interface System”, page 220.

Shared Libraries

128

shared-library-prog-impl1.out

This is Shared implementation 1.

If you set it to the shared.impl2 build item's directory, you will see this instead:

shared-library-prog-impl2.out

This is Shared implementation 2.
This is a private static library inside implementation 2.

Note that we could have made shared depend on shared.impl2 instead of shared.impl1 and gotten the same
results. Hiding the actual shared library implementation behind a pass-through build item provides a useful device
for allowing you to reconfigure the system later on, including replacing place-holder shared library-based stub imple-
mentations with static library implementations later in the development process. With careful planning, this type of
technique could be used to provide a shared-library based stub system that could be swapped out later with very little
effect on the overall build system.

129

Chapter 22. Build Item Rules and
Automatically Generated Code
In this chapter, we show how to use abuild with custom rules provided by build items. The most common application
of build item-supplied rules is to support automatic code generation. Examples are presented for both the GNU Make
backend and the Groovy/ant as the mechanisms are very similar.

22.1. Build Item Rules

The most important thing to realize about code generators in abuild is that code generation can be viewed as a just
another service that a build item can offer, just like libraries or header files. In many build systems, code generators
are problematic because you need to take special steps to make sure generated code appears before compilation or
dependency generation begin. With abuild, code generators get run at the correct stage by virtue of appearing in the
correct place in the dependency tree.

Any build item may provide custom rules. 1 To provide custom rules, a build item creates a rules directory. The rules
themselves go in a subdirectory of rules either named all, for rules that can be used by any build item, or named after
the target type (one of object-code, java, or platform-independent) for rules that are available only to build items of
the specified target type. When searching for rules, abuild always looks the directory under rules corresponding to
the build item's target type first, and then it searches the all directory. The basic procedure for providing build item
rules is essentially the same for both backends. The differences are mainly syntactic. We describe the mechanisms
in turn for each backend.

In order for a make-based build item to provide code generation, it must supply additional make rules. The rules are
in the form of a make fragment. The name of the rules file is rulename.mk, where rulename is whatever you are
calling the rules. This is what people who use the rules will place in their RULES variable in their Abuild.mk file. Any
rules provided by a build item are run from the abuild output directory of the build item that is using the rules, just as is
the case with built-in rules. That means that if the rules need to refer to files inside the build item that provides the rules,
they must do so by either accessing interface variables defined in that build item's Abuild.interface or by prefixing the
files with a variable that abuild provides. Specifically, for a build item named build-item, abuild provides variable
called abDIR_build-item that can be accessed from the rules implementation file. Note that abuild only provides
these variables for build items in your dependency chain. Also, use of these variables from Abuild.mk files is strongly
discouraged as it can cause your build tree to contain path-based dependencies instead of name-based dependencies,
which would defeat one of the most compelling advantages of abuild. The best practice is to refer to files in your
own build item from your own files by using the abuild-provided variable name to find your own path, and to define
interface variables for files that you intend for other build items to access. Either way, there are certain things that it
are important to keep in mind when writing GNU Make rules for use inside of abuild. For a discussion of this topic,
please see Section 30.2, “Guidelines for Make Rule Authors”, page 205.

In order for a Groovy-based build item to provide rules, it must supply additional groovy code in a file called
rulename.groovy. Build items can use the rule by adding rulename to the abuild.rules parameter in their
Abuild.groovy files. Within the context of the build item-supplied, the variables abuild.sourceDirectory and
abuild.buildDirectory are File objects that represent the build item directory and output directory of the item on behalf
of which the rules are being invoked. If the rules need to reference a file inside of the build item that is providing the
rules, it should either set an interface variable or access its location by name using abuild.itemPaths[item-name],
where item-name is the name of the build item providing the rules. Abuild only provides locations for build items
that are plugins or that are in the dependency chain of the item being built.

1 Actually, there is no way for build items using the deprecated xml-based ant backend to provide custom rules. They are limited to providing code
for specific hooks in the set rule structure. It is possible for plugins to provide custom targets using preplugin-ant.xml.

Build Item Rules and Auto-
matically Generated Code

130

A build item may actually provide rules for both backends at the same time as .mk and .groovy files can co-mingle
in the rules directory. Whichever type of rules are being provided, rule authors are encouraged to create a help file
that gives the user information needed to use the rules. The help file is called rulename-help.txt and resides in the
same directory as the rules.

22.2. Code Generator Example for Make
The derived-code-generator build item in doc/example/general/user/derived/code-generator contains a trivial
code generator. All it does is generate a source and header file that define a function that returns a constant, which is
read from a file. We have modified derived-main to use the code generator. The code generator itself is implemented
in the derived-codegen build item, which provides a rule set called code-generator. The build item is making these
rules available for build items of type object-code. The file that implements the rules is therefore called rules/
object-code/code-generator.mk.

First, we'll look at the code generator itself. Notice that the only abuild file contained in the derived-code-generator
build item directory at user/derived/code-generator is Abuild.conf. There is no Abuild.interface or Abuild.mk, though
these files could exist if the build item itself had something that it needed to build.

Before we get to the rules themselves, observe that there is another file in rules/object-code: the help file, rules/
object-code/code-generator-help.txt, the contents of which are presented here:

general/user/derived/code-generator/rules/object-code/code-generator-help.txt

You must set these variables:
 DERIVED_CODEGEN_SRC -- name of a C source file to generate
 DERIVED_CODEGEN_HDR -- name of a C header file to generate
 DERIVED_CODEGEN_INFILE -- a file containing a numerical value

These rules will generate a source file called DERIVED_CODEGEN_SRC
which will contain a function called getNumber(). That function will
return the number whose value you have placed in the file named in
DERIVED_CODEGEN_INFILE. The file DERIVED_CODEGEN_HDR will contain a
prototype for the function.

You must include DERIVED_CODEGEN_SRC in the list of sources for one of
your build targets in order to have it included in that target.

Whenever you provide a rule implementation for rule rulename, you should create a rulename-help.txt file in the
same directory. This is the file that will be displayed when the user types abuild --help rules rule:rulename.

The most important part of this example is the rule implementation file, so we'll study it carefully. Here is the rules/
object-code/code-generator.mk file:

general/user/derived/code-generator/rules/object-code/code-generator.mk

Make sure that the user has provided values for all variables
_UNDEFINED := $(call undefined_vars,\
 DERIVED_CODEGEN_HDR \
 DERIVED_CODEGEN_HDR \
 DERIVED_CODEGEN_INFILE)

Build Item Rules and Auto-
matically Generated Code

131

ifneq ($(words $(_UNDEFINED)),0)
$(error The following variables are undefined: $(_UNDEFINED))
endif

all:: $(DERIVED_CODEGEN_HDR) $(DERIVED_CODEGEN_SRC)

$(DERIVED_CODEGEN_SRC) $(DERIVED_CODEGEN_HDR): $(DERIVED_CODEGEN_INFILE) \
 $(abDIR_derived-code-generator)/gen_code
 @$(PRINT) Generating $(DERIVED_CODEGEN_HDR) \
 and $(DERIVED_CODEGEN_SRC)
 perl $(abDIR_derived-code-generator)/gen_code \
 $(DERIVED_CODEGEN_HDR) \
 $(DERIVED_CODEGEN_SRC) \
 $(SRCDIR)/$(DERIVED_CODEGEN_INFILE)

The first thing that happens is that we have some code that checks for undefined variables. This isn't strictly necessary,
but it can save your users a lot of trouble if you detect when variables they are supposed to provide are not there. We
use the function undefined_vars to do this check. This function is provided by abuild and appears in the file make/
global.mk relative to the top of the abuild installation. If you expect to write a lot of make rules, it will be in your best
interest to familiarize yourself with the functions offered by this file. Even if we hadn't done this, abuild invokes GNU
Make in a manner that causes it to warn about any undefined variables. This is useful because undefined variables
are a common cause of makefile errors.

Then we add our source file to the all:: target to make sure it gets built. Note that we use all::, not all:, since there are
multiple all:: targets throughout various rules files. Adding our source files to the all:: target is not strictly necessary
in this case since, by listing the source file as a source file for one of our targets (in the build item that uses this code
generator), it will be built in the proper sequence. It's still good practice to do this though, but remember that in a
parallel build, dependencies of the all:: target may not necessarily be built in the order in which they are listed.

Next, we have the actual make rules that create the automatically generated files. In this case, we make the output files
depend on both the input file and the code generator. Although abuild is running the rules from the depending build
item's output directory, we don't need to put any prefix in front of the name of the input file: abuild sets make's VPATH
variable so that the file can be found. By creating a dependency on the code generator as well, we can be sure that if
the code generator itself is modified, any code that it generates will also be updated.

In the commands for generating our files, notice that we don't need an @ sign before the generation command to prevent
it from echoing since abuild doesn't echo its output by default. Not putting an @ sign there means that the user will
see the command if he/she runs abuild with the --verbose option. So that the user knows something is happening, we
generate a useful output message using @$(PRINT). The use of @$(PRINT) ensures that we don't see the actual echo
command even when running with --verbose (since otherwise, we'd see the echo command immediately followed
by the output of the echo command), and that we don't see the output at all when we're running with --silent. All
informational messages should be generated this way. Note also that we invoke the code generator with perl rather
than assuming that it is executable (since some version control systems or file systems make it hard to preserve execute
permissions) and that we specify the path to the code generator in terms of $(abDIR_derived-code-generator). Also
notice that we have to prefix the name of the input file with $(SRCDIR) when we pass it to the code generator since
we are running from the abuild output directory. The VPATH variable tells make where to look, but it doesn't tell
our code generator anything! However, the special GNU Make variables like $< and $^ will contain the full paths to
prerequisites and can often be used instead.

To use this code generator from derived-main.src, all we have to do is define the required variables in Abuild.mk,
add derived-code-generator as a dependency in Abuild.conf, and add code-generator to the RULES variable in
Abuild.mk. Note that we have modified main.cpp to include auto.h and to call getNumber(), thus testing the use of the
code generator. Since this application effectively contains the only test suite for the code generator, we declare it as a
tester of the code generator in Abuild.conf using traits. Here are the relevant files from derived-main.src:

Build Item Rules and Auto-
matically Generated Code

132

general/user/derived/main/src/Abuild.conf

name: derived-main.src
platform-types: native
deps: common-lib2 project-lib derived-code-generator world-peace
traits: tester -item=derived-main.src -item=derived-code-generator

general/user/derived/main/src/Abuild.mk

TARGETS_bin := main
DERIVED_CODEGEN_SRC := auto.c
DERIVED_CODEGEN_HDR := auto.h
DERIVED_CODEGEN_INFILE := number
SRCS_bin_main := main.cpp $(DERIVED_CODEGEN_SRC)
RULES := ccxx code-generator

Here is the modified main.cpp file:

general/user/derived/main/src/main.cpp

#include <ProjectLib.hpp>
#include <CommonLib2.hpp>
#include <iostream>
#include <world_peace.hh>
#include "auto.h"

int main(int argc, char* argv[])
{
 std::cout << "This is derived-main." << std::endl;
 ProjectLib l;
 l.hello();
 CommonLib2 cl2(6);
 cl2.talkAbout();
 cl2.count();
 std::cout << "Number is " << getNumber() << "." << std::endl;
 // We don't have to know or care whether this is the stub
 // implementation or the real implementation.
 create_world_peace();
 return 0;
}

22.3. Code Generator Example for Groovy
The build tree containing the Java code generator example, built using the Groovy framework, can be found in the tree
located at java. The code generator itself is at java/code-generator. This example discusses the code generator, and it
also serves as a general example for several aspects of the Groovy framework.

In any situation in which code generators are used, there will always be one build item that provides the code generator
and one or more build items that use the code generator. In some cases, the provider and user will be the same build
item, but in the most general case, the code generator will usually be provided by a build item whose sole purpose

Build Item Rules and Auto-
matically Generated Code

133

is to provide the code generator. In the Java world, a useful and common way to perform code generation is through
providing a custom ant task, which is what we do here.

We'll start our examination by looking at the build item that provides the code generator. We provide a simple build
item whose name is just code-generator. (In a real implementation, you would obviously want to give this a more
specific name.) Its Abuild.conf and Abuild.groovy files reveal a very ordinary build item:

java/code-generator/Abuild.conf

name: code-generator
platform-types: java

java/code-generator/Abuild.groovy

parameters {
 java.includeAntRuntime = 'true'
 java.jarName = 'CodeGenerator.jar'
 abuild.rules = 'java'
}

The only thing unusual about this Abuild.groovy file is that it sets the parameter java.includeAntRuntime to true. This
is necessary for any build item that uses ant's API, such as when adding a new ant task. This build item generates a
JAR file, but unlike most Java build items, this JAR file is not intended to be added to the compile-time, run-time, or
package-time class paths. Instead, we just assign it to a specific interface variable so that it can be used in the taskdef
statement of the rules implementation. Here is the Abuild.interface file:

java/code-generator/Abuild.interface

Provide a variable that names our code generator so we can use it in
taskdef. Since this jar just creates an ant task, we don't need to
add it to the classpath.

declare code-generator.classpath filename
code-generator.classpath = $(ABUILD_OUTPUT_DIR)/dist/CodeGenerator.jar

Next, let's look at the example task itself. This is just a regular Java implementation of an ant task. There's nothing
abuild-specific about it, but we'll show it here for completeness. This task just creates a class with a public negate
method that returns the opposite of the number passed in. The task takes the fully qualified class name and the source
directory into which the class should be written as arguments. Here is the implementation:

java/code-generator/src/java/com/example/codeGenerator/ExampleTask.java

package com.example.codeGenerator;

import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.regex.Pattern;
import java.util.regex.Matcher;
import org.apache.tools.ant.Task;
import org.apache.tools.ant.BuildException;

Build Item Rules and Auto-
matically Generated Code

134

public class ExampleTask extends Task
{
 private File sourceDir;
 public void setSourceDir(File dir)
 {
 this.sourceDir = dir;
 }

 private String fullClassName;
 public void setClassName(String name)
 {
 this.fullClassName = name;
 }

 public void execute() throws BuildException
 {
 if (this.sourceDir == null)
 {
 throw new BuildException("no sourcedir specified");
 }
 if (this.fullClassName == null)
 {
 throw new BuildException("no fullclassname specified");
 }
 Pattern fullClassName_re = Pattern.compile(
 "^((?:[a-zA-Z0-9_]+\\.)*)([a-zA-Z0-9_]+)$");

 Matcher m = fullClassName_re.matcher(this.fullClassName);
 if (! m.matches())
 {
 throw new BuildException("invalid fullclassname");
 }

 String packageName = m.group(1);
 String className = m.group(2);

 if (packageName.length() > 0)
 {
 packageName = packageName.substring(0, packageName.length() - 1);
 }

 File outputFile = new File(
 this.sourceDir.getAbsolutePath() + "/" +
 this.fullClassName.replace('.', '/') + ".java");
 File parentDir = outputFile.getParentFile();

 if (parentDir.isDirectory())
 {
 // okay
 }
 else if (! parentDir.mkdirs())
 {
 throw new BuildException("unable to create directory " +

Build Item Rules and Auto-
matically Generated Code

135

 parentDir.getAbsolutePath());
 }

 if (! outputFile.isFile())
 {
 try
 {
 FileWriter w = new FileWriter(outputFile);
 if (packageName.length() > 0)
 {
 w.write("package " + packageName + ";\n");
 }
 w.write("public class " + className + "\n{\n");
 w.write(" public int negate(int n)\n {\n");
 w.write(" return -n;\n }\n");
 w.write("}\n");
 w.close();
 }
 catch (IOException e)
 {
 throw new BuildException("IOException: " + e.getMessage());
 }

 log("created " + outputFile.getAbsolutePath());
 }
 }
}

To make this task available for use by other Java build items, we have to provide an implementation of the appropriate
rules. The implementation of the rules can be found in the file rules/java/codegenerator.groovy. This means that people
can use these rules by ensuring that codegenerator appears in abuild.Rules, almost certainly along with java. As is
always advisable, we also provide a rules help file, which is rules/java/codegenerator-help.txt, is shown here:

java/code-generator/rules/java/codegenerator-help.txt

** Help for users of abuild.rules = 'codegenerator' **

Set the parameter codeGenerator.classname to the fully qualified
classname to be generated.

To generate multiple classes, instead set the parameter
codeGenerator.codegen to a list of maps, each of which has a
'classname' key.

The implementation of the rules is heavily commented, but we'll also provide some additional discussion following
the text. You may wish to follow the implementation as you read the text in the rest of this section. Here is the code
generator implementation:

java/code-generator/rules/java/codegenerator.groovy

// This code provides the "codegen" task, provided by this build item,

Build Item Rules and Auto-
matically Generated Code

136

// to generate a class named by the user of the build item.

// Create a class to contain our targets. From inside our class,
// properties in the script's binding are not available. By doing our
// work inside a class, we are protected against a category of easy
// coding errors. It doesn't matter if the class name collides with
// other classes defined in other rules.

class CodeGenerator
{
 def abuild
 def ant

 CodeGenerator(abuild, ant)
 {
 this.abuild = abuild
 this.ant = ant

 // Register the ant task. The parameter
 // 'code-generator.classpath' is set in Abuild.interface.
 ant.taskdef('name': 'codegen',
 'classname': 'com.example.codeGenerator.ExampleTask',
 'classpath': abuild.resolve('code-generator.classpath'))
 }

 def codegenTarget()
 {
 // By using abuild.runActions, it is very easy for your custom
 // targets to support production of multiple artifacts. This
 // method illustrates the usual pattern.

 // Create a map of default attributes and initialize this map
 // by initializing its members from the values of
 // user-supplied parameters. In this case, the 'classname'
 // key gets a value that comes from the
 // 'codeGenerator.classname' parameter. If the
 // codeGenerator.classname parameter is not set, the key will
 // exist in the map and will have a null value.
 def defaultAttrs = [
 'classname': abuild.resolveAsString('codeGenerator.classname')
]

 // Call abuild.runActions to do the work. The first argument
 // is the name of a control parameter, the second argument is
 // a closure (here provided using Groovy's method closure
 // syntax), and the third argument is the default argument to
 // the closure. If the control parameter is not initialized,
 // runActions will call the closure with the default
 // attributes. Otherwise, the control parameter must contain
 // a list. Each element of the list is either a map or a
 // closure and will cause some action to be performed. If it
 // is a map, any keys in defaultAttrs that are not present in
 // the map will be added to the map. Then the default closure

Build Item Rules and Auto-
matically Generated Code

137

 // will be called with the resulting map. If the element is a
 // closure, the closure will be called, and the default
 // closure and attributes will be ignored.
 abuild.runActions('codeGenerator.codegen', this.&codegen, defaultAttrs)
 }

 def codegen(Map attributes)
 {
 // This is the method called by abuild.runActions as called
 // from codegenTarget when the user has not supplied his/her
 // own closure. Since defaultAttrs contained the 'classname'
 // key, we know that it will always be present in the map,
 // even when the user supplied his/her own map.

 // In this case, we require classname to be set. This means
 // the user must either have defined the
 // codeGenerator.classname parameter or provided the classname
 // key to the map. If neither has been done, we fail. In
 // some cases, it's more appropriate to just return without
 // doing anything, but in this case, the only reason a user
 // would select the codegenerator rules would be if they were
 // going to use this capability. Also, in this example, we
 // ignore remaining keys in the attributes map, but in many
 // cases, it would be appropriate to remove the keys we use
 // explicitly and then pass the rest to whatever core ant task
 // is doing the heart of the work.

 def className = attributes['classname']
 if (! className)
 {
 ant.fail("property codeGenerator.classname must be defined")
 }
 ant.codegen('sourcedir': abuild.resolve('java.dir.generatedSrc'),
 'classname': className)
 }
}

// Instantiate our class and add codegenTarget as a closure for the
// generate target. We could also have added a custom target if we
// wanted to, but rather than cluttering things up with additional
// targets, we'll use the generate target which exists specifically
// for this purpose.

def codeGenerator = new CodeGenerator(abuild, ant)
abuild.addTargetClosure('generate', codeGenerator.&codegenTarget)

In the Groovy programming language, a script is a special type of class that has access to read and modify variables
in the binding. This is a powerful facility that makes it easy to communicate between the script and the caller of the
script. Abuild makes use of the binding to provide the ant project and other state to rules implementations. However,
one downside is that any undeclared variable becomes part of the binding, which may not be what you intended. To
minimize unintended consequences of using undeclared variables, we recommend the practice of doing most of the
work inside a class. For any script that contains any code other than a single class implementation, Groovy automati-
cally creates a class named after the file. Since our rules implementation defines a class and then also contains other
code, we set the name of the class explicitly to something other than the name of the file. This this case, the base part

Build Item Rules and Auto-
matically Generated Code

138

of the file name is codegenerator, but we name the class inside of it CodeGenerator. Our class's constructor takes
as arguments a reference to the abuild object (see Section 19.10.1, “Interface to the abuild Object”, page 115) and
to the ant project (see Section 19.7.2, “The Ant Project”, page 113). This is a common pattern suitable for use for just
about any rule implementation. The constructor performs global setup. In this case, we just call ant.taskdef, as would
be done by virtually any task-providing custom rules. Other things that would be appropriate to do in your constructor
would be initializing additional fields of your object or doing any other types of operations that would be common
in class constructors. The main things you should not do are to perform operations that depend on users' parameter
settings or on state of an in-progress build since, at the this is loaded, not all initialization is necessarily in place.

Right after the constructor, we have the implementation of codegenTarget. This method will be used as the closure for
the target provided by these rules. This target follows the pattern expected to be used for all but the most trivial rules:
it sets up a default attributes list whose fields are initialized from parameters intended to be set in users' Abuild.groovy
files. Here, we initialize the classname field from the codeGenerator.classname parameter. This is what makes it pos-
sible for the user to specify the name of the class to be generated by setting that parameter or, alternatively, by providing
lists of maps containing the classname key. Once we provide our default attributes, we can just call abuild.runActions.
The abuild.runActions method takes three arguments: the name of the control parameter, a closure that implements
the required actions, and the default attributes. The closure, which here uses the Groovy method closure syntax of
object.&method syntax, will be invoked with a map. This map will always have any keys in it that are defined
in the defaultAttrs argument.

The next significant chunk of code here is the codegen method. This is the method that actually does the work. Every-
thing up to this point has just been scaffolding. The codegen method takes a single parameter: a map of attributes. Any
key provided in the default attributes is known to be defined. Any other keys can be used at the discretion of the code.
A common convention, which is used by most of abuild's built-in targets, is to take extra attributes and just pass them
along to whichever underlying ant task is doing the real work. In this case, we simply ignore extra attributes since
the work is being done by a custom task, and we have already handled all available options. In this code, we set the
className variable to a field of the attributes element. Other common idioms would be to set something conditionally
upon whether a key is present or to set something and also to delete the attribute. For examples of these, please refer to
the implementation of the built-in java rules (Appendix J, The java.groovy and groovy.groovy Files, page 316). The
actual implementation of our code generator target just does a few sanity checks and then invokes the task using the
task we've provided. Notice that we use java.dir.generatedSrc as the directory in which to write the generated class.
This is what all code generators should do. By using abuild.resolve to get the value at this point, we ensure that any
changes the user may have made to the value of that parameter will be properly accounted for. Resolving the parameter
as needed is a better implementation choice than reading the parameter value in the constructor and stashing it in a
field as it prevents rules from ignoring late changes to the value of the parameter.

Finally, we come to the code that resides outside the CodeGenerator class. This code just creates an instance of
the class, passing to it the abuild and ant objects from the binding, and then adds the codegenTarget method as a
closure for the generate target, again using Groovy's method closure syntax. Sometimes you might want to do other
checks here, such as making sure other required rules have been loaded. Abuild's built-in groovy rules do this. The
implementation of those rules is included in Appendix J, The java.groovy and groovy.groovy Files, page 316.

Now that we've seen how the rules are implemented, we can see how the rules are used. The good news is that using
the rules is much simpler than implementing them. This is as it should be: creation of rules is a much more advanced
operation that needs to be performed by people with more in-depth knowledge of abuild. Using rules should be very
simple. Our library build item in java/library makes use of the code generator. To do this, it must declare a dependency
on the code-generator build item, as you can see in the Abuild.conf file:

java/library/Abuild.conf

name: library
platform-types: java
deps: code-generator

Build Item Rules and Auto-
matically Generated Code

139

and it must set the required parameter to generate the class. In this case, we use com.example.library.Negator as
the fully qualified class name, as you can see by looking at the Abuild.groovy file:

java/library/Abuild.groovy

parameters {
 java.jarName = 'example-library.jar'

 // Generate a Negator class using code-generator. If we wanted to
 // create multiple classes, we could instead set
 // codeGenerator.codegen to a list of maps with each map
 // containing a classname key. For an example of setting a
 // parameter to a list of maps, see ../executable/Abuild.groovy.
 codeGenerator.classname = 'com.example.library.generated.Negator'

 // Use both java and codegenerator rules.
 abuild.rules = ['java', 'codegenerator']
}

We also include one statically coded Java source file which, along with the generated class, will be packaged into
example-library.jar. Here, for completeness, is the text of the additional source file, which just wraps around the
generated class:

java/library/src/java/com/example/library/Library.java

package com.example.library;

import com.example.library.generated.Negator;

public class Library
{
 private int value = 0;
 private Negator n = new Negator();

 public Library(int value)
 {
 this.value = value;
 }

 public int getOppose()
 {
 return n.negate(value);
 }
}

Finally, as for any well-behaved Java build item that exports a JAR file, we add the JAR file to the regular compile-time
class path as well as to the manifest class path. We do this here by following archiveName/archivePath convention first
discussed in Section 3.6, “Building a Java Library”, page 15 and by adding the archive file to both abuild.classpath
and abuild.classpath.manifest. Here is the Abuild.interface file:

java/library/Abuild.interface

declare library.archiveName string = example-library.jar

Build Item Rules and Auto-
matically Generated Code

140

declare library.archivePath filename = \
 $(ABUILD_OUTPUT_DIR)/dist/$(library.archiveName)
abuild.classpath = $(library.archivePath)
abuild.classpath.manifest = $(library.archivePath)

The example in Section 22.4, “Multiple Wrapper Scripts”, page 140 creates an executable that tests this library.

22.4. Multiple Wrapper Scripts
This example illustrates use of a target's control parameter to cause that target to be run multiple times. In this case,
we set the java.wrapper parameter to a list of maps so that we can generate two wrapper scripts. One of them is used
to test the library and code generator discussed in Section 22.3, “Code Generator Example for Groovy”, page 132,
and also illustrates reading a file that was placed in the JAR by placing it in src/resources. The other main just prints
a message. Here is the very ordinary Abuild.conf:

java/executable/Abuild.conf

name: executable
platform-types: java
deps: library

Here is the first main class:

java/executable/src/java/com/example/executable/Executable.java

package com.example.executable;

import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.BufferedReader;
import com.example.library.Library;

public class Executable
{
 private void showTextFile()
 {
 try
 {
 InputStream is = getClass().getClassLoader().getResourceAsStream(
 "com/example/file.txt");
 if (is == null)
 {
 System.err.println("can't find com/example/file.txt");
 System.exit(2);
 }
 BufferedReader r = new BufferedReader(new InputStreamReader(is));
 String line;
 while ((line = r.readLine()) != null)
 {
 System.out.println(line);
 }

Build Item Rules and Auto-
matically Generated Code

141

 r.close();
 }
 catch (IOException e)
 {
 System.err.println(e.getMessage());
 }
 }

 public static void main(String[] args)
 {
 if (args.length != 1)
 {
 System.err.println("Executable: one argument is required");
 System.exit(2);
 }

 int value = 0;
 try
 {
 Integer i = new Integer(args[0]);
 value = i.intValue();
 }
 catch (NumberFormatException e)
 {
 System.err.println("Executable: argument must be a number");
 System.exit(2);
 }

 Library lib = new Library(value);
 System.out.println("The opposite of " + value +
 " is " + lib.getOppose());

 new Executable().showTextFile();
 }
}

Here is the file it reads from resources:

java/executable/src/resources/com/example/file.txt

This is a text file.

Here is the second main class:

java/executable/src/java/com/example/executable/Other.java

package com.example.executable;

public class Other
{
 public static void main(String[] args)

Build Item Rules and Auto-
matically Generated Code

142

 {
 System.out.println("Here's another main just for show.");
 }
}

Finally, here is the Abuild.groovy file. Observe here how we set the java.wrapper parameter to a list of maps by
appending one map at a time. This is one of many syntaxes that could be used, but it uses less extraneous punctuation
than many of the other choices:

java/executable/Abuild.groovy

parameters {
 java.jarName = 'example-executable.jar'

 // Here we are going to generate multiple wrapper scripts. We do
 // this by appending two different maps to the java.wrapper
 // parameter, each of which has a name key and a mainclass key.
 // There are many choices of syntax for doing this. Here we use
 // Groovy's << operator to add something to a list. We could also
 // have appended twice to java.wrapper in two separate statements,
 // or we could have explicitly assigned it to a list of maps.
 java.wrapper <<
 ['name': 'example',
 'mainclass' : 'com.example.executable.Executable'] <<
 ['name': 'other',
 'mainclass' : 'com.example.executable.Other']

 abuild.rules = 'java'
}

22.5. Dependency on a Make Variable
In the previous example, we showed how to create a code generator that generates code from a file. This works nicely
because make's dependency system is based on file modification times. Sometimes, you may want to generate code
based on the value of a make variable whose origin may be either Abuild.mk or, more likely, Abuild.interface. Doing
this is more difficult because it requires some obscure make coding, but it is common enough to warrant an example.

The “obvious” way to pass information from a make variable into your code would be to use a preprocessor symbol
based on the variable and to pass this symbol to the code with XCPPFLAGS or XCPPFLAGS_Filename. The prob-
lem with this is that there is no dependency tracking on variable values, so if you change the variable value, there is
nothing that will trigger recompilation of the files that use the preprocessor symbol. To get around this problem, we
use local rules to generate a file with the value of the variable. This example can be found in doc/example/auto-from-
variable.

First, look at the file-provider build item in library. This build item automatically generates a header file based on
the value of a make variable. The variable itself is defined in the Abuild.interface file:

auto-from-variable/library/Abuild.interface

Add $(ABUILD_OUTPUT_DIR) to includes since that's where the
generated header is located.
INCLUDES = . $(ABUILD_OUTPUT_DIR)

Build Item Rules and Auto-
matically Generated Code

143

LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = file-provider

Provide a variable for the location of the file that we are
providing
declare file-provider-filename filename
file-provider-filename = interesting-file

We define the variable file-provider-filename to point to a local file. By making this a filename variable, we tell
abuild to translate its location to the path to this file as resolved relative to the Abuild.interface file's directory. Note
that we use the build item name in the variable name to reduce the likelihood of clashing with other interface variables.
In the Abuild.mk file we use the LOCAL_RULES variable to declare the local rules file generate.mk. This is where we
will actually generate the header file. Otherwise, this is an ordinary Abuild.mk:

auto-from-variable/library/Abuild.mk

TARGETS_lib := file-provider
SRCS_lib_file-provider := FileProvider.cc
RULES := ccxx
LOCAL_RULES := generate.mk

Here is generate.mk:

auto-from-variable/library/generate.mk

Write the value to a temporary file and replace the real file if the
value has changed or the real file doesn't exist.
DUMMY := $(shell echo > variable-value.tmp $(file-provider-filename))
DUMMY := $(shell diff >/dev/null 2>&1 variable-value.tmp variable-value || \
 mv variable-value.tmp variable-value)

Write the header file based on the variable value. We can just use
the variable directly here instead of catting the "variable-value"
file since we know that the contents of the file always match the
variable name.

abs_filename := $(abspath $(file-provider-filename))
If this is cygwin supporting Windows, we need to convert this into a
Windows path. Convert \ to / as well to avoid quoting issues.
ifeq ($(ABUILD_PLATFORM_TOOLSET),nt5-cygwin)
 abs_filename := $(subst \,/,$(shell cygpath -w $(abs_filename)))
endif

FileProvider_file.hh: variable-value
 echo '#ifndef __FILEPROVIDER_FILE_HH__' > $@
 echo '#define __FILEPROVIDER_FILE_HH__' >> $@
 echo '#define FILE_LOCATION "$(abs_filename)"' >> $@
 echo '#endif' >> $@

Make sure our automatically generated file gets generated before we
compile FileProvider.cc. Unfortunately, the only way to do this
that will work reliably in a parallel build is to create an explicit
dependency. We use the LOBJ variable to get the object file suffix

Build Item Rules and Auto-
matically Generated Code

144

because FileProvider.cc is part of a library. One way to avoid this
issue entirely would be to automatically generate a source file
instead of a header file, but as it is often more convenient to
generate a header file, we illustrate how to do so in this example.
FileProvider.$(LOBJ): FileProvider_file.hh

There is a lot going on here, so we'll go through line by line. GNU Make is essentially a functional programming
environment. Makefiles are not executed sequentially; they are evaluated based on dependencies instead. Sometimes
you need to force make to run steps sequentially. You can trick make into doing this by making the operations side
effects of a variable assignment using the := operator since these are evaluated when they are read. Our goal here is
to translate a variable value, which can't be tracked by the dependency system, into a file modification time, which
can. To do this, we create a file whose value and modification time get updated whenever the variable value changes.
We do this in two steps: first, we write the value of the variable to a temporary file (the first DUMMY assignment),
and then we overwrite another file with the temporary file if the other file either doesn't exist or has a different value
(the second assignment). In this way, whenever the variable changes, the file called variable-value gets updated.
Although the variable-value.tmp file gets updated every time when run abuild, we don't care since that file is not used
as a dependency. Next, we provide the rules to actually generate the header file. The header file depends on the file
variable-value so it will get regenerated whenever the variable changes. Here we just use echo to write the header file.
Note that we have to call make's abspath function to translate the value of file-provider-filename to an absolute path.
This is because abuild writes filename variables as relative paths when it passes them to make. Note also that didn't
actually have to use the value of the variable-value file. We know that its contents are identical to the value of the
variable, so we can just use the variable's value directly. Finally, we want to make sure that FileProvider_file.hh exists
before we start compiling any of the files that reference it. We have a little bit of a bootstrapping problem here: although
abuild ordinarily generates dependency information of object files on header files automatically, this generation step is
performed during the compilation itself. In order to force the header file to be generated before the compile starts, we
have to create an explicit dependency. We do this by creating an explicit dependency from the object file to the header
file. Notice that we use the make variable LOBJ to get the object file suffix rather than hard-coding it. All compiler
support files are required to set the variable LOBJ to the suffix of object files that are going into libraries and OBJ for
object files that are not going into libraries. Although they are often the same, they don't have to be. 2

We have two files that use the header file. The first one is the library implementation itself:

auto-from-variable/library/FileProvider.cc

#include <FileProvider.hh>
#include <FileProvider_file.hh>
#include <fstream>
#include <iostream>
#include <stdlib.h>

FileProvider::FileProvider() :
 filename(FILE_LOCATION)
{
}

2 It would be nice to be able to avoid this issue entirely. One way to avoid it would be generate a source file instead of a header file. In that case,
make would definitely try to generate the source file before building, so no explicit dependency would be required. This approach would certainly
work for this example. One option that would definitely not work would be to create a generate target, analogous to the generate target in abuild's
Groovy/ant support, and making it a prerequisite for the all target. Although this would work for strictly serial builds, it wouldn't necessarily work
for parallel builds as make is free to build all the prerequisites for a given target in any order as long as they don't have dependencies on each other.
In fact, the reason this trick works in Groovy is that the Groovy framework never runs targets in parallel, and ant only runs tasks within a target
in parallel when you explicitly tell it that it can. So the bottom line is that whatever we are automatically generating, at the file level, must appear
as a dependency somewhere. Source files automatically appear as dependencies of their object files, but header files don't appear as dependencies
anywhere until the compile has already been run at least one time. Therefore, a solution that works for parallel builds and generates header files
has to create an explicit dependency such as in this example.

Build Item Rules and Auto-
matically Generated Code

145

void
FileProvider::showFileContents() const
{
 std::ifstream in(this->filename);
 if (! in.is_open())
 {
 std::cerr << "Can't open file " << this->filename << std::endl;
 exit(2);
 }
 char c;
 while (in.get(c))
 {
 std::cout << c;
 }
}

The other is the main program from the other build item:

auto-from-variable/program/main.cc

#include <FileProvider.hh>
#include <FileProvider_file.hh>
#include <iostream>

int main()
{
 FileProvider fp;
 std::cout << "Showing contents of " << FILE_LOCATION << ":" << std::endl;
 fp.showFileContents();
 return 0;
}

There are a few additional points to be made about this example. We have taken an approach here that can be tailored
for a wide variety of situations. In this example, the interface variable is accessible to other build items. If we didn't
want this to be the case, we could have used an Abuild.mk variable instead or we could have made this variable visible
conditionally upon an interface flag. We have also made the header file available to other build items by adding the
output directory to INCLUDES in Abuild.interface. If you didn't want these to have such high visibility, you could
protect them just as you would protect any private interfaces. In other words, this example is a little bit of an overkill
for the exact case that it implements, but it shows a pattern that can be used when this type of functionality is required.
The main thing to take away here is the use of a make trick to translate a variable value into a file modification time,
thus making it trackable with make's ordinarily dependency tracking mechanism.

22.6. Caching Generated Files
As a general rule, it's a good idea to avoid controlling automatically generated files. Instead, it's often best to have
the generation of those files be part of the build process. Sometimes, however, you might find yourself in a situation
where the tool used to create the generated file may not always be available. Perhaps it's a specialized tool that requires
separate installation or licensing but whose output is generally usable. In cases such as this, it would be helpful if
the build system would cache the generated files and use the cached files if all the input files are up to date. This is
the functionality provided by codegen-wrapper, located in abuild's util directory, and accessible through use of the
$(CODEGEN_WRAPPER) variable within user-supplied make rules.

Build Item Rules and Auto-
matically Generated Code

146

The codegen-wrapper command can handle the situation described above for relatively simple cases, but it is likely
to be good enough for many situations. For details on its syntax, please run it with no options to get a summary. It
works as follows:

• The codegen-wrapper command the following inputs:

• a cache directory, which must exist in advance

• a list of input files

• a list of output files

• a command to generate the output files from the input files

• The codegen-wrapper checks the following prerequisites:

• For each input file infile, see if the file infile.md5 exists in the cache directory and contains the md5 checksum of
infile. You may pass the --normalize-line-endings flag to codegen-wrapper to have it disregard differences in
line endings (carriage return + newline vs. newline) when computing checksums.

• For each output file outfile, see if a file called outfile exists in the cache directory.

If all of the above prerequisites are satisfied, codegen-wrapper copies the output files from the cache directory into the
output directory. Otherwise, codegen-wrapper runs the specified command. If the command succeeded and generated
all the expected output files, codegen-wrapper updates the checksums of the input files and copies all the generated
files into the cache directory. Note that the cache directory is expected to be a controlled directory that is part of your
source tree. As such, it is likely that codegen-wrapper will actually update files in the cache directory which you will
subsequently have to check into your version control system.

22.6.1. Caching Generated Files Example
Let's now look at an example. We have an example that provides a simple code generator. This generator reads an input
file and, based on annotations in the file, repeats some input lines into an output file. However, its exact functionality
is not important; for purposes of this example, all we need to care about is that it generates some output file from
an input file.

To use this code generator, we'll adopt a convention that any input file passed to the code generator will generate a
file by the same name appended with the .rpt suffix. The code generator build item will require that any input files
be named in the variable INPUT. For each file named in $(INPUT), it will the corresponding .rpt file using the code
generator. If the variable REPEATER_CACHE is defined, the build item will use that as the cache directory. We
implement that with the following rule fragment:

codegen-wrapper/repeater/rules/all/repeater.mk

_UNDEFINED := $(call undefined_vars,\
 INPUT)
ifneq ($(words $(_UNDEFINED)),0)
$(error The following variables are undefined: $(_UNDEFINED))
endif

all:: $(foreach I,$(INPUT),$(I).rpt)

define rpt_command
 perl $(abDIR_repeater)/repeater.pl -i $< -o $@
endef

Build Item Rules and Auto-
matically Generated Code

147

$(INPUT:%=%.rpt): %.rpt: %
 @$(PRINT) Generating $@ from $< with repeater
ifdef REPEATER_CACHE
 $(CODEGEN_WRAPPER) --cache $(REPEATER_CACHE) \
 --input $< --output $@ --command $(rpt_command)
else
 $(rpt_command)
endif

There's a lot here, so let's go through it line by line. At the beginning, we see the normal check for undefined variables.
We want to make sure that the INPUT variable is defined. (Obviously, a real build item would have to come up with
a better, less generic name than this.) Next, we add all the .rpt lines to the all target, as usual, by adding them as
dependencies of all specified with two colons, indicating that there are multiple all targets. So far, there's nothing
different from any other code generator.

Next, we define a macro rpt_command which actually runs the command to generate the files. Note that, in this case,
the code generator lives right in the build item, so there's really not much reason to use codegen-wrapper with it. But
our purpose here is to demonstrate codegen-wrapper, so we'll use it! When defining this macro, we make use of the
variables $< and $@. These are predefined make variables that, when evaluated in the context of a rule, refer to the
first prerequisite and the target respectively. They aren't valid at the point where the macro is defined, but they are valid
at the point where it is expanded, which is what's relevant. We don't really have to define a macro for this, but doing
so helps us to avoid having to repeat the invocation of the code generator, which might be involved in some cases.

Finally, there's the rule itself. This is a typically GNU Make pattern rule that generates a .rpt file from an input file
without the suffix. The complete rule is prefixed with the list of output files, thus restricting it to only apply on this
files. Within the rule definition itself, we make the generation step conditional upon whether the REPEATER_CACHE
variable is defined. The effect of the ifdef is applied at the time the file is read, no at the time the rule is run, but this is
okay because the rule implementation file is always loaded after Abuild.mk. When REPEATER_CACHE is not defined,
we just run the repeater command normally. When it is defined, we run it with $(CODEGEN_WRAPPER), specifying
the cache directory, the inptu files, the output files, and the commands using arguments to the codegen-wrapper
command as invoked through the $(CODEGEN_WRAPPER) variable.

Let's look at two build items that use these rules. They both set their RULES variable to include repeater. Both build
items set the INPUT variable. Only the second one sets the REPEATER_CACHE variable. Here are the Abuild.mk file:

codegen-wrapper/user1/Abuild.mk

INPUT := file1 file2
RULES := repeater

codegen-wrapper/user2/Abuild.mk

REPEATER_CACHE := cache
INPUT := file1 file2
RULES := repeater

Assuming that we start off with an empty cache directory, here is what the first build from scratch with abuild -b
all would generate:

repeater-pass1.out

abuild: build starting

Build Item Rules and Auto-
matically Generated Code

148

abuild: user1 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user1/abuild-indep'
Generating file1.rpt from ../file1 with repeater
Generating file2.rpt from ../file2 with repeater
make: Leaving directory `--topdir--/codegen-wrapper/user1/abuild-indep'
abuild: user2 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user2/abuild-indep'
Generating file1.rpt from ../file1 with repeater
codegen-wrapper: generation succeeded; cache updated
Generating file2.rpt from ../file2 with repeater
codegen-wrapper: generation succeeded; cache updated
make: Leaving directory `--topdir--/codegen-wrapper/user2/abuild-indep'
abuild: build complete

Note that, for the build item user1, we just saw the messages that the output files were generated from the input files.
For user2, you can see messages from codegen-wrapper indicating that generation succeeded and that it has updated
the cache.

If we built again right away, the output files would already exist and be newer than the input files, so the rule wouldn't
even trigger. Therefore we have to first clean everything with abuild -c all to demonstrate the cache functionali-
ty. If you're following along, you'll notice that the directory codegen-wrapper/user2/cache now contains four files:
file1.md5, file1.rpt, file2.md5, and file2.rpt. Here's the output of a second build from clean with abuild -b all:

repeater-pass2.out

abuild: build starting
abuild: user1 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user1/abuild-indep'
Generating file1.rpt from ../file1 with repeater
Generating file2.rpt from ../file2 with repeater
make: Leaving directory `--topdir--/codegen-wrapper/user1/abuild-indep'
abuild: user2 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user2/abuild-indep'
Generating file1.rpt from ../file1 with repeater
codegen-wrapper: files are up to date; using cached output files
Generating file2.rpt from ../file2 with repeater
codegen-wrapper: files are up to date; using cached output files
make: Leaving directory `--topdir--/codegen-wrapper/user2/abuild-indep'
abuild: build complete

This time, the build of user1 looks the same, but the build of user2 is different. Instead of actually running the command
to generate the output, we see codegen-wrapper telling us that files are up to date and that it is using the cached files.

The best part about this is that if we modify one of the input files, the cache will get automatically updated. Without
doing a clean, we can add some line to the end of codegen-wrapper/user2/file2 and run another build with abuild -
b all. That generates the following output:

repeater-mod-pass1.out

abuild: build starting
abuild: user1 (abuild-indep): all
abuild: user2 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user2/abuild-indep'

Build Item Rules and Auto-
matically Generated Code

149

Generating file2.rpt from ../file2 with repeater
codegen-wrapper: generation succeeded; cache updated
make: Leaving directory `--topdir--/codegen-wrapper/user2/abuild-indep'
abuild: build complete

Nothing happened in build item user1 at all since everything was up to date. Likewise, we see no mention of file1 in
user2. However, for file2 in user2, we once again see the output from codegen-wrapper indicating that generation
succeeded and that it has updated the cache. Doing another clean build abuild -c all followed by abuild -b all, we
once again see that files from the cache are used:

repeater-pass2.out

abuild: build starting
abuild: user1 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user1/abuild-indep'
Generating file1.rpt from ../file1 with repeater
Generating file2.rpt from ../file2 with repeater
make: Leaving directory `--topdir--/codegen-wrapper/user1/abuild-indep'
abuild: user2 (abuild-indep): all
make: Entering directory `--topdir--/codegen-wrapper/user2/abuild-indep'
Generating file1.rpt from ../file1 with repeater
codegen-wrapper: files are up to date; using cached output files
Generating file2.rpt from ../file2 with repeater
codegen-wrapper: files are up to date; using cached output files
make: Leaving directory `--topdir--/codegen-wrapper/user2/abuild-indep'
abuild: build complete

There's a lot to swallow here, but you will hopefully recognize the power and usefulness of such an approach. Hope-
fully, the codegen-wrapper tool will meet some of your needs. Even if it doesn't, it may provide a starting point. Here
are a few things to take away from this example:

• Writing code generators is always going to require some advanced make coding. The incremental complexity added
by codegen-wrapper is relatively low, so for simple code generators, enhancing them to use this utility should be
reasonably straightforward.

• The codegen-wrapper tool doesn't do anything fancy with respect to knowing how to generate output file names
from input file names. Instead, we just pass the actual names to it on the command line. Using the make variables
$< and $@ makes this easy. Sometimes there may be multiple input files and/or multiple output files. Handling
multiple input files is fairly easy. The make variable $^ contains all the prerequisites for a given target while $<
contains the first prerequisite. Using $< or $^ for your input files and $@ for your output files is nice when you
can get away with it because all the handling of finding input files in .. (through make's VPATH feature) is handled
for you automatically.

Handling multiple output files may be a bit trickier, but it can still be done. You may need to experiment a little.
Often you will find that make will pick whichever target it tries to create first as $@ and that the rule will be invoked
only one time. In this case, you may have to generate your output file names yourself. Sometimes you can do this by
defining them relative to $@, which you should do if at all possible. For an example of this, you can look at make/
standard-code-generators.mk in your abuild distribution. This code uses codegen-wrapper for flex and bison. The
bison rules generate multiple output files from a single input file and generate the multiple output names from $@
in this way.

• In our little example, the code generator was always available, so when we modified the input file, everything
worked. If the code generator were not available or if it failed, codegen-wrapper would fail with the same exit
status and would not updated the cache.

150

Chapter 23. Interface Flags
In this chapter, we will examine interface flags. Both interface flags and standard abuild interface conditionals allow
us to cause a particular interface variable assignment to be evaluated only under a specific condition. When such
assignments are implemented inside normal abuild interface conditional blocks, all depending build items will see the
results of such assignments in the same way (as would be typical of any variable assignment system). With interface
flags, it is possible to have different build items see the effects of different assignments to certain variables, a concept we
describe in greater depth below. This is an unusual capability, but it is very useful for implementing private interfaces.
In this chapter, we will explore interface flags in enough detail to see how to use them to implement private interfaces,
which is their primary use.

23.1. Interface Flags Conceptual Overview
If there were a contest to select the most unusual feature of abuild, interface flags would probably be the strongest
contender for the prize. This section presents a conceptual overview that should be good enough to enable you to
make use of interface flags to implement private interfaces. We provide a private interface example at the end of this
chapter. In order to provide a conceptual overview of how interface flags work, we will present a partial but accurate
explanation of how they work, and we will focus our attention on list variables only. To understand interface flags in
full detail, see Section 33.7, “Implementation of the Abuild Interface System”, page 220.

Every build item in abuild, whether it has an Abuild.interface file or not, has an abuild interface. The abuild interface
for a build item is the union of all the interfaces of all its dependencies, taken in dependency order, along with its own
Abuild.interface, if any. To understand what we mean by the “union” of abuild interfaces, you have to know a little
bit about how abuild stores interfaces.

Recall that abuild interface files contain a series of variable declarations and assignments, and that variables may
be declared in one file and assigned to in other files. In particular, it is standard operating procedure for numerous
Abuild.interface files to all assign to the same list variables (INCLUDES, LIBDIRS, LIBS, abuild.classpath, etc.). As
abuild reads interface files and encounters multiple assignments to the same list variable, it doesn't actually update
some internal notion of that variable's value as you might suspect. Rather than storing the values of variables in a
build item's interface, abuild actually retains a list of all the assignments to a given variable throughout all the relevant
Abuild.interface files. This enables abuild to compute the values of variables when they are needed. When we say that
an abuild interface is the union of the interfaces of its dependencies, what we really mean is that the value of each
interface variable comes from the union of all assignments to those variables across all the dependencies' interface files.

There are two different times when abuild computes the value of an interface variable. The first is when that variable is
expanded in an Abuild.interface file using the $(VARIABLE) syntax. The second is when abuild generates the dynamic
output file as introduced in Section 17.1, “Abuild Interface Functionality Overview”, page 83. In each case, abuild
computes the value of a variable by looking at all the assignments it knows about at that time and combining them
together based on whether the list variable is an append list or a prepend list. Either way, since abuild has a history
of all assignments to the variable, it has everything it needs to compute the value of the variable.

Now this is where flags come in. As we saw in Section 17.2, “Abuild.interface Syntactic Details”, page 86, it is possible
to associate a given variable assignment with an interface flag. When a variable assignment is associated with an
interface flag, abuild simply stores this fact in the list of assignments to the variable. When it is time to compute a value
for the variable, abuild filters out all assignments that are associated with a flag that isn't set. Consider the following
example. Suppose the variable VAR1 is declared as an append list of strings, and that you have the following
assignments to VAR1:

VAR1 = one
flag flag1 VAR1 = two
VAR1 = three

Interface Flags

151

If you evaluate this sequence of assignments with the flag1 flag set, the value of VAR1 would be one two three.
If you evaluate this list of assignments without the flag1 flag set, the value of VAR1 would just be one three.

Here is a subtle but important point. You don't really have to understand it to make use of private interfaces, but if you
can understand it, you will be well on your way to grasping how interface flags really work. This handling of interface
flags means that the value of a variable is based on the collection of flags that are set when its value is computed. As we
already noted, there are two instances in which abuild computes the values of variables: when it encounters a variable
expansion while reading Abuild.interface files, and when it creates dynamic output files. Interface flags are only set
when creating dynamic output files. At the time that Abuild.interfaces are being read, flags haven't been set yet. If this
worked any other way, it would not be possible for multiple build items to see different values for certain variables,
and that is the whole reason for being of interface flags. We defer further discussion of this point to Section 33.7,
“Implementation of the Abuild Interface System”, page 220.

23.2. Using Interface Flags
In order to associate a particular variable assignment with a flag, the assignment in an Abuild.interface file must be
prefixed with flag flagname, as we have seen above. Before flagname can be associated with an assignment, it
must be declared as one of the build item's supported flags. This is achieved by including the flag in the supported-flags
keyword in Abuild.conf. For example:

supported-flags: flagname

As we have already seen, the effect of an assignment that is associated with a flag is visible only if the value of the
variable is requested when the specified flag is set. The only time this ever happens is when abuild is creating the
dynamic output file for a build item. We mentioned above that abuild maintains a list of assignments for each variable
and retains a record of any flag that may have been associated with each assignment. Abuild also stores the name of
the build item that is responsible for each assignment in a variable's assignment history. When one build item depends
on another, it may request the evaluation of any assignments made by the dependency item that were associated with a
specific flag. This is done by including the -flag=flagname option when declaring the dependency in the Abuild.conf
file. For example, if build item A wanted to see all assignments that B made associated with the private flag, then
A's Abuild.conf would contain the following line:

deps: B -flag=private

When a flag is specified as part of a dependency in this fashion, abuild requires that the dependency list the given
flag as one of its supported flags. For example, in this case, it would be an error if B's Abuild.conf did not list private
in its supported-flags key.

As mentioned above, the effect of any flag-based assignment is visible only when actually exporting a build item's
interface to the dynamic output. When abuild exports a build item's own interface for its own use, it does so with all of
the flags supported by that build item in effect. For example, in Figure 23.1, “Private Interface Flag”, page 152, B
has an include directory and a private-include directory. It wants the include directory to be visible to all build items
that depend on it, but the private-include directory should be visible only to other build items that specifically ask for
it. B would indicate that it supports the private flag by adding this line to its Abuild.conf:

supported-flags: private

If it wanted the header files in include directory to be visible to all items that depend on it, but it wanted the header
files in the private-include directory to be visible only to those build items that specifically requested by depending
on it with the private flag, it would include the following lines in its Abuild.interface file:

INCLUDES = include

Interface Flags

152

flag private INCLUDES = private-include

If A wanted to see the private-include directory, it could indicate that it wants the private flag set when it reads B's
Abuild.interface. It would do this by including the following in its Abuild.conf:

deps: B -flag=private

Then, when A reads B's Abuild.interface file, it will see the private-include assignment. B will also see it because build
items always see all of their own flag-based assignments. If a third build item X depended on A without specifying
the private flag, it would not see B's private-include directory as that assignment would not be inherited through A's
interface.

Figure 23.1. Private Interface Flag

A and B see private-include, but X does not.

This is a bit tricky to understand. For additional clarification, see the example below, Section 23.3, “Private Interface
Example”, page 152.

Although we have used a single and generically named private flag for this example, there is nothing special about
the name “private”. There's no reason that other special-purpose flags couldn't be introduced to provide fine-grained
control over which parts of a build item are to be visible to other build items. In most cases, use of a simple flag like
private should suffice. To reduce confusion among developers in a project, it is recommended that a project adopt its
own conventions about how interface flags will be used.

23.3. Private Interface Example

Here we return to our user trees in doc/example/general/user. In our user branch, we have modified the project-lib
library to make use of private interfaces. If you look at the Abuild.conf in the src directory, you will see that it lists
private in its supported-flags key:

general/user/project/lib/src/Abuild.conf

name: project-lib.src
platform-types: native

Interface Flags

153

deps: common-lib1
supported-flags: private

In its Abuild.interface file, it adds ../private-include to INCLUDES only when the private flag is set:

general/user/project/lib/src/Abuild.interface

INCLUDES = ../include
flag private INCLUDES = ../private-include
LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = project-lib

This makes the headers in the private-include directory visible to it and any build item that depends on it with -
flag=private. 1 Note that the project-lib.src build item didn't have to do anything special to see its own private
interfaces. This is because a build item automatically operates with all of its own interface flags set for itself. Another
thing we've done in this build item is to put the new source file ProjectLib_private.cpp in a private subdirectory:

general/user/project/lib/src/Abuild.mk

TARGETS_lib := project-lib
SRCS_lib_project-lib := \
 ProjectLib.cpp \
 private/ProjectLib_private.cpp
RULES := ccxx

The only reason we did this was to demonstrate that abuild allows multi-element paths (i.e., paths with subdirectories
in them) in your source variables. Just avoid putting “..” anywhere in the path. 2

If you study ProjectLib.cpp in user/project/lib/src, you will notice that we have included the file
ProjectLib_private.hpp, which is located in the private-include directory, and that we have called a function that is
declared in that file to get the value with which we initialize cl1:

general/user/project/lib/private-include/ProjectLib_private.hpp

#ifndef __PROJECTLIB_PRIVATE_HPP__
#define __PROJECTLIB_PRIVATE_HPP__

extern int ProjectLib_private_get_value();
extern void ProjectLib_private_set_value(int);

#endif // __PROJECTLIB_PRIVATE_HPP__

general/user/project/lib/src/ProjectLib.cpp

#include "ProjectLib.hpp"
#include "ProjectLib_private.hpp"

1 Note that when the private flag is set, both assignments to INCLUDES take effect. To understand why this is, please see Section 33.7, “Imple-
mentation of the Abuild Interface System”, page 220.
2 Such constructs, if permitted, would potentially cause abuild to write files outside the output directory. For example, if you had ../A.cc as a source
file, abuild would construct abuild-platform/../A.o as the object file name. Fortunately, abuild actually detects this case and reports an error.

Interface Flags

154

#include <iostream>

ProjectLib::ProjectLib() :
 cl1(ProjectLib_private_get_value())
{
}

void
ProjectLib::hello()
{
 this->cl1.countBackwards();
}

Private interfaces can be particularly useful in any implementation that hides implementation details from outside users
because it can prevent accidentally accessing restricted header files. This type of construct is most useful in straight
C code rather than C++ code since C doesn't provide any encapsulation capability other than use of opaque types
defined in private header files. This is somewhat akin to using the friend keyword in C++, except that access to private
interfaces is requested by the accessor rather than the accessee. 3

The test code in main.cpp in user/project/lib/test also calls a function defined in the private header file. Note that the
Abuild.conf file in the test directory mentions project-lib.src explicitly in its dependency list, and that it is followed
by -flag=private:

general/user/project/lib/test/Abuild.conf

name: project-lib.test
platform-types: native
deps: project-lib project-lib.src -flag=private
traits: interesting tester -item=project-lib.src

This means that when project-lib.test reads project-lib.src's Abuild.interface file, any assignments that are flagged
with the private flag will be processed.

The alert reader may notice that we have also assigned the trait interesting to this build item. Although the build item
is somewhat interesting, the primary purpose of doing this is to illustrate the use of a trait without a referent build
item and to show how a trait can be added in a specific tree to supplement traits that are available because of our
tree dependencies.

3 Since the build item that supports the private flag is also protected by the scope of its name, this gives us an added layer of protection.

155

Chapter 24. Cross-Platform Support
24.1. Platform Selection

When abuild starts up, it determines a list of object-code platform types and, within each platform type, a list of
platforms. Platforms are given initial priorities based on the order in which they are declared with later declarations
having higher priority than earlier ones. (In this way, platforms added by plugins are preferred over internally defined
ones.) By default, abuild builds each object-code build item on the highest priority platform in each of its platform
types. Abuild may also choose to build an item on additional platforms to satisfy dependencies.

The list of platforms on which abuild will attempt to build an item may be overridden using platform selectors. Platform
selectors may be specified in the ABUILD_PLATFORM_SELECTORS environment variable or on the command line
using the --platform-selector or -p command-line flag. Each platform selector may refer to a specific platform type
or may be a general selector for all platform types. There may be at most one selector for each platform type and at
most one general selector. If multiple selectors for the sample platform type or multiple general selectors are specified,
abuild chooses the last one. Selectors given on the command line always take precedence over those in the environment
variable. This makes it possible for later options to override earlier ones or for the command line to override the
environment. To specify multiple selectors in the environment, set the variable to contain multiple space-separated
words. To specify multiple selectors on the command line, provide the command-line option more than once. For
example:

--platform-selector selector [--platform-selector selector ...]

or

ABUILD_PLATFORM_SELECTORS="selector[selector ...]"

Each selector is of the form

[platform-type:]criteria

If no platform-type is specified, then the selector applies to all object-code platform types. When applying se-
lectors, abuild will always first try a selector for the specific platform type first. Only if there isn't one will abuild
attempt to use the general selector.

The criteria field above may have one of the following forms:

• option=option

• compiler=compiler[.option]

• platform=os.cpu.toolset.compiler[.option]

• all

• default

• skip

The special skip selector prevents automatic selection of any platforms from the type. When it is used, no platforms
from that platform type are selected by default, so no builds will be done in that platform type except when needed to
satisfy a dependency. This could be useful if you only wanted to do embedded builds, for example. This is the only

Cross-Platform Support

156

selector that can be used with the indep or java platform types. Starting with abuild 1.1.4, it is valid to specify skip
without a platform type qualifier, which will suppress any default platform selection for any object code platform type.
This could be used to build only indep and java, or it could be used to suppress all but a specific platform type by
also providing a type-specific selector for the type you do want to build.

The default selector means to select whichever platform would be selected if no platform specifier were given. It
must be used with a platform type qualifier. This is useful to direct abuild to use the default for a given platform type
when a general specifier was used.

The other selectors are translated into an (os, cpu, toolset, compiler, option) tuple. Each field may be * or a
platform field. The selector all is equivalent to *.*.*.*.*. The empty string may not be explicitly specified, but
omitted fields are mapped to the empty string. For example, compiler=x is equivalent to ("", "", "", "x", "").
Any empty string field except for option matches the corresponding field of the highest priority platform (the last
one declared) in the list of platforms for the given type. This is the always the first platform listed for the platform type
by abuild --list-platforms. An empty option field means that the option field of the platform must be empty.

When picking platforms on which to build by default, abuild will always pick the first platform that matches the
criteria. If there are no matches, it will pick the first platform of the platform type. If any of the fields of the selector
are equal to *, then abuild will select all platforms that match the criteria, again falling back to only the first platform
in the type if there are no matches.

Here are several examples. For purposes of discussion, assume that we have the following platforms, shown here by
type:

vxworks

vxworks.ppc.6_3.vxgcc
vxworks.x86.6_3.vxgcc
vxworks.x86.6_3.vxgcc.debug

native

linux.x86.rhel4.xlc
linux.x86.rhel4.xlc.debug
linux.x86.rhel4.xlc.release
linux.x86.rhel4.gcc
linux.x86.rhel4.gcc.debug
linux.x86.rhel4.gcc.release

If no platform selectors were provided, we would build native build items with linux.x86.rhel4.xlc and vx-
works build items with vxworks.ppc.6_3.vxgcc. Here are several platform selectors along with a description
of what they mean:

native:option=debug
On the native platform type, build with the first platform that has the debug option. If none, build with
the first platform regardless of its options. (This is always the behavior when there are no platforms that
fit the criteria, so this will not repeated for each example.) In this case, we would build native items on
linux.x86.rhel4.xlc.debug. Build the default platform for vxworks.

native:compiler=gcc.release
On the native platform type, build with compiler gcc with the release option. In this case, that would be
linux.x86.rhel4.gcc.release. Build the default platform for vxworks.

compiler=gcc vxworks:default
On all object-code platform types except vxworks, build with gcc with no options. For native, this is
linux.x86.rhel4.gcc. Explicitly build the default platform for vxworks.

Cross-Platform Support

157

native:compiler=gcc.*
On the native platform type, build all gcc platforms with all options, including the gcc platform with-
out any options. That would include linux.x86.rhel4.gcc, linux.x86.rhel4.gcc.debug, and
linux.x86.rhel4.gcc.release. Build the default platform for vxworks.

native:compiler=*.debug
On the native platform type, build all platforms that have the debug option: linux.x86.rhel4.xlc.debug
and linux.x86.rhel4.gcc.debug. Build the default platform for vxworks.

native:compiler=*.*
On the native platform type, build all platforms: linux.x86.rhel4.xlc,
linux.x86.rhel4.xlc.debug, linux.x86.rhel4.xlc.release, linux.x86.rhel4.gcc,
linux.x86.rhel4.gcc.debug, and linux.x86.rhel4.gcc.release. Build the default for vx-
works.

vxworks:platform=*.*.*.*.debug
On vxworks, build for all platforms that have the debug option: vxworks.x86.6_3.vxgcc.debug. Build
the default platform for native.

vxworks:platform=*.x86.*.*.*
On vxworks, build all platforms that have x86 as the cpu field: vxworks.x86.6_3.vxgcc and
vxworks.x86.6_3.vxgcc.debug.

skip indep:skip java:skip vxworks:default
Skip all platform types except vxworks, and build with the default platform for vxworks. Note that specifying
skip by itself only skips object-code platform types, so we have to explicitly skip indep and java as well.

vxworks:skip
Skip the vxworks platform type; no vxworks builds will be done except as needed to satisfy dependencies. Native
builds are done normally.

platform=*.*.*.*
For all otherwise unspecified platform types, build for all platforms that have an empty op-
tion field: vxworks.ppc.6_3.vxgcc, vxworks.x86.6_3.vxgcc, linux.x86.rhel4.xlc, and
linux.x86.rhel4.gcc.

platform=*.*.*.*.*
For all otherwise unspecified platform types, build for all platforms. This is the same specifying the platform
selector all.

24.2. Dependencies and Platform Compatibility

As you can see, any given build item may build on one more platforms. When build item A depends on build item B,
that dependency must be satisfied separately for each platform on which A builds. So if A and B both build on platforms
p1 and p2, then the actual situation is that A on p1 depends on B on p1, and A on p2 depends on B on p2. This case
of A and B building on the same platforms is simple and common, but there are cases in which things don't work out so
easily. For this, abuild has two concepts: platform compatibility and explicit cross-platform dependencies. We discuss
platform compatibility here and explicit cross-platform dependencies in the next section. These sections describe these
concepts in basic terms. For the complete story with all the details, please refer to Section 33.6, “Construction of the
Build Graph”, page 218.

The rules for platform compatibility are fairly straightforward. Specifically, a platform p in a platform type pt is
compatible with all other platforms in pt and also with all platforms in pt's parent platform type, and by extension,
all the way up the hierarchy of platform types. Starting with abuild 1.1.4, when a platform type is declared, it can

Cross-Platform Support

158

optionally be declared to have a parent platform type. In all versions of abuild, any platform type declared without a
parent has the platform type indep as an implicit parent. This means that all platforms are compatible with indep,
which is how any build item of any platform type can depend on a build item of type indep.

For example, suppose you are creating a plugin to define platform types for the VxWorks embedded operating sys-
tem, and you are creating separate platform types for different embedded boards that have different vendor-supplied
board support packages. Suppose you also have a body of code that will work for all VxWorks boards and don't
contain anything that depends on a specific board support package. To implement this, you could create a common
platform type for the specific version of VxWorks and then also create child platform types for each specific board.
For example, you could have a base type called vxworks-6_8-base and child types vxworks-6_8-bsp1 and
vxworks-6_8-bsp2. Now if you had a build item Q of type vxworks-6_8-bsp1 and a build item R of type
vxworks-6_8-bsp2, both build items could depend on item S of type vxworks-6_8-base since all platforms
in the two board-specific platform types are compatible with the platforms in the base type. Additionally, if there were
a build item T of type indep, all three of the other build items could depend on T because indep is compatible
with all other platform types. For further discussion of creating platform types, see Section 29.3.1, “Adding Platform
Types”, page 187.

24.3. Explicit Cross-Platform Dependencies

Ordinarily, when A depends on B, abuild requires that B be buildable on platforms that are compatible with all the
platforms A is being built on. In this case, the instance of A being built on platform p depends specifically on the
instance of B being built on platform p or some other platform that is compatible with p. Under these rules, it would
be impossible for A to depend on B if B couldn't be built on at least one platform that was compatible with each of A's
platforms. This would make it impossible for a platform-independent item to depend on any object-code or Java build
items, object-code and Java build items to depend on each other, or for non-compatible object-code platform types to
depend on each other. (Recall from the previous section that any item can depend on a platform-independent build
item since the platform type indep is compatible with all other platform types.) To make these other cases possible,
abuild allows a dependency to declare that the dependency should be on a specific platform by using the -platform
flag to the dependency declaration. Rather than declaring a platform by name, the argument to the -platform argument
is either a platform type or a platform-type-qualified platform selector. In this case, the instance of A on each of its
platforms depends on the specifically selected instance of B. 1

To choose which of B's platforms will be used, abuild picks the first platform in the given type that matches the
platform selector. Matches are performed using the same technique as when platform selectors are specified on the
command line with two exceptions: the criteria field may be omitted, and the selector only ever matches a single
platform even if * appears as one of the fields. Abuild versions prior to 1.1 ignored any platform specifiers given on
the command line or in the environment when resolving cross-platform dependencies, but the current abuild does take
them into consideration. If you want to specify a platform-specific dependency on the default platform for a given
platform type regardless of any platform selectors, you can specify platform-type:default as the -platform
option to your dependency.

24.3.1. Interface Errors
Under a very specific set of circumstances, it is possible to have a subtle and hard-to-understand error condition involv-
ing interface variables with cross-platform dependencies. You should feel free to skip this section unless you are either
determined to understand the deepest subtleties of how abuild works or you have been directed here by an error mes-
sage issued by abuild. To understand the material in this section, it will help to understand Section 33.6, “Construction
of the Build Graph”, page 218 and Section 33.7, “Implementation of the Abuild Interface System”, page 220.

1 Note that a platform-specific dependency overrides the dependency platform choice for all platforms on which the depending is being built. It is
not presently possible to make the platform-specific dependency behave differently for different platform types of the depending item. This behavior
could be simulated by making use of separate intermediate build items, but if you find yourself doing that, you may need to rethink how you're
using the various platform types.

Cross-Platform Support

159

Internally, when abuild builds a build item, it loads the interfaces of all the other build items that the item depends
on. If item A depends on item B in two different ways (say directly and indirectly or indirectly through two different
dependency paths), abuild will effectively still load B's interface file only one time because of the way the interface
system keeps track of things. At least this is what happens under normal circumstances. If, however, the two different
instances of B in A's dependency chain are from different platforms, problems can arise.

We should note that this can happen only under the following conditions:

• Build item A depends (directly or indirectly) on two items, which we'll call X1 and X2.

• Both X1 and X2 depend on B.

• At least one of X1 and X2 depends on B with a platform-specific dependency. If both do, they do so with different
platform specifications.

When all of the above conditions have been met, A will have two different instances of B in its dependency chain.

Once this situation has occurred, it becomes possible for there two be conflicting assignments to a variable, both of
which originate from the same line of the same interface file. For example, if B's Abuild.interface file assigns the
value of $(ABUILD_OUTPUT_DIR) to a scalar interface variable, the effect of that assignment will differ across the
two different instances of B. Abuild will detect this case and issue an error message. (That error message will direct
you here to this section of the manual!) If B assigns this to a list variable, there's no problem—abuild will honor both
assignments. It's also no problem if the assignment doesn't have different meanings on the different platforms. It's only
when the same assignment causes a conflict that abuild will complain.

If you should run into this situation, there are several possible remedies you should consider.

• Rethink why you are using cross-platform dependencies in this way. If you're just trying to make sure that some
other build item gets built, consider whether you can use build-also instead of platform-specific dependencies to
meet your needs.

• If you want both values and doing this won't hurt other build items, use a list variable instead of a non-list variable.
In this case, abuild will give you both (all) values.

• If you don't care which value you get, and doing so doesn't cause other problems for other build items, use a fallback
or override assignment instead of a regular assignment. Then you'll get the first (in the case of fallback) or last (in
the case of override) assignment that is processed.

• If you can't change B's interface and A doesn't care about the value of the value, you can do a reset on the offending
variable from the one or more of the items that A depends on and that depend on different instances of B. For
example, X1 could have an after-build file that resets the offending variable. Then when A imports X1's interface,
it will no longer include the conflicting assignment from B's interface.

24.4. Dependencies and Pass-through Build
Items

When a build item does not declare any platform types and has dependencies on items of multiple platform types, that
item because a pass-through build item and is handled slightly differently with respect to dependencies. Specifically,
a pass-through build item is implicitly buildable on every platform, so any build item may depend on a pass-through
build item. Also if a specific instance of pass-through build item on a specific platform depends on another item for
which there are no compatible platform types, that dependency is ignored. This makes it possible to use pass-through
build items to provide wrappers around families of alternative build items that provide related but separate functionality
for consumers of different platform types.

Cross-Platform Support

160

For example, suppose build items A1 and B1 build on platform X and build items A2 and B2 build on platform Y. If A1
and A2 depend on pass-through item P which in turn depends on B1 and B2, abuild will create effective dependencies
between the A1 and A2 and also between B1 and B2 based on platform type (see Figure 24.1, “Multiplatform Pass-
through Build Item”, page 160).

Figure 24.1. Multiplatform Pass-through Build Item

Pass-through item P effectively connects A1 to B1 and A2 to B2 based on their platform types.

What's really happening here is that the instance of P for X depends on B1 and ignores B2 while the instance of P on
Y depends on B2 and ignores B1. If P also had a dependency on some third build item of type indep, both instances
of P, and therefore effectively both A1 and B1 would also depend on the third item of type indep.

The documentation doesn't provide a specific example that illustrates that case because this type of usage would be
fairly unusual. 2 Instead, we will provide a description of how it would work. Suppose you had a plugin to support
VxWorks, an embedded operating system, that added a platform type vxworks, and you wanted to provide a cus-
tom threading library that worked for your native platform and for VxWorks. Suppose also that your native library
implementation used boost threads but that you wanted to create a VxWorks implementation that used VxWorks
native threads. You could create a pass-through build item called threads that depends on threads.native and
threads.vxworks, and you could set up threads.native to have platform-types native and threads.vxworks
to have platform-types vxworks. The threads build item would not declare any platform types. It would just de-
pend on threads.vxworks and threads.native. If you now had a program that supported both native and vx-
works that depended on threads, your application would use the threads.native implementation when it built
on the native platforms and the threads.vxworks implementation when it built on vxworks platforms. This
would happen transparently because of the pass-through build item. If you wanted to allow any build item to depend
on threads even if there is no support for that item's platform type, you could also create threads.indep and make

2 Okay, we don't provide an example because it's tricky to make one that would be more illustrative than confusing without an actual embedded
platform to work with. If we did create an example, we'd have to make up some kind of simulated embedded platform with a plugin, and that would
probably create more confusion than it would be worth.

Cross-Platform Support

161

threads depend on that as well. Just keep in mind that all instances of threads will depend on the indep version
even if they also depend on one of the platform-specific versions.

To fully understand why this works, please see Section 33.6, “Construction of the Build Graph”, page 218. Note
that you could also put conditionals in your Abuild.interface and/or Abuild.mk to avoid having to split this into multiple
build items, so this is not the only solution. The same trick would work if you wanted to create a facade for a library
that was implemented in multiple languages, though it's unlikely that there would be any reason to do that: although
you can have one build item that builds for multiple platform types, you can't have a single build item that builds
for target types.

24.5. Cross-Platform Dependency Example
In the doc/example/cross-platform directory, there is a build tree that illustrates abuild's ability to enhance dependency
declaration with platform type or platform information. In this example, we show a platform-independent code gen-
erator that calls a C++ program to do some of its work. We also show a program that uses this code generator. We'll
examine these build items from the bottom up in the dependency chain. Our first several items are quite straightforward
and are no different in how they work from what we've seen before.

First, look at lib:

cross-platform/lib/Abuild.conf

name: lib
platform-types: native

cross-platform/lib/Abuild.mk

TARGETS_lib := lib
SRCS_lib_lib := lib.cc
RULES := ccxx

cross-platform/lib/Abuild.interface

LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = lib
INCLUDES = .

This build item defines a function f that returns the square of its integer argument. Here is lib.cc:

cross-platform/lib/lib.cc

#include "lib.hh"

int f(int n)
{
 return n * n;
}

Next, look at calculate:

cross-platform/calculate/Abuild.conf

Cross-Platform Support

162

name: calculate
platform-types: native
deps: lib

cross-platform/calculate/Abuild.mk

TARGETS_bin := calculate
SRCS_bin_calculate := calculate.cc
RULES := ccxx

cross-platform/calculate/calculate.cc

#include <lib.hh>
#include <iostream>
#include <stdlib.h>

int main(int argc, char* argv[])
{
 for (int i = 1; i < argc; ++i)
 {
 int n = atoi(argv[i]);
 std::cout << n << "\t" << f(n) << std::endl;
 }
 return 0;
}

This is a simple program that takes a number of arguments on the command line and prints tab-delimited output with
the number in column 1 and the square of the number in column 2. It uses the f function in lib to do the square
calculation, and therefore depends on the lib build item.

So far, we haven't seen anything particularly unusual in this example, but this is where it starts to get interesting. The
material here is tricky. To follow this, you need to remember that variables set in Abuild.interface files of build items
you depend on are available to you as make variables. We can use make's export command to make those variables
available in the environment.

The calculate build item exports the name of its program in an interface variable in its Abuild.interface file by creating
a variable called CALCULATE:

cross-platform/calculate/Abuild.interface

declare CALCULATE filename
CALCULATE = $(ABUILD_OUTPUT_DIR)/calculate
after-build after.interface

As with all interface variables, this will be available as a make variable within Abuild.mk. It also includes the after-build
file after.interface:

cross-platform/calculate/after.interface

no-reset CALCULATE

Cross-Platform Support

163

reset-all

This file protects the CALCULATE variable from being reset, and then calls reset-all. In this way, items that depend on
calculate will not automatically inherit the interface from lib or any of its dependencies. This represents the intention
that a dependency on the calculate build item would be set up if you wanted to run the calculate program rather than
to link with or include header files from the libraries used to build calculate. In other words, we treat calculate
as a black box and don't care how it was built. This works because the CALCULATE variable, which contains the
name of the calculate program, was protected from reset, but the LIBS, LIBDIRS, and INCLUDES variables have been
cleared. In that way, a user of the calculate build item won't link against the lib library or be able to include the
lib.hh header file unless they had also declared a dependency on lib. If we hadn't cleared these variables, any code
that depended on the calculate build item may well still have worked, but it would have had some excess libraries,
include files, and library directories added to its compilation commands. In some cases, this could create unanticipated
code dependencies, expose you to namespace collisions, or cause unwanted static initializers to be run.

Next, look at the codegen build item. This build item runs a code generator, gen_code.pl, which in turn runs the
calculate program. We provide the name of our code generator in the Abuild.interface file:

cross-platform/codegen/Abuild.interface

declare CODEGEN filename
CODEGEN = gen_code.pl

This build item provides a rules implementation file in rules/object-code/codegen.mk (and a help file in rules/ob-
ject-code/codegen-help.txt) for creating a file called generate.cc. It calls the gen_code.pl program, which it finds using
the CODEGEN interface variable, to do its job. The gen_code.pl program uses the CALCULATE environment variable
to find the actual calculate program. Although we have the CALCULATE variable as a make variable (initialized from
calculate's Abuild.interface file), we need to export it so that it will become available in the environment. We also
pass the file named in the NUMBERS variable to the code generator. Here are the codegen-help.txt file, the codegen.mk
file, and the code generator:

cross-platform/codegen/rules/object-code/codegen.mk

Export this variable to the environment so we can access it from
$(CODEGEN) using the CALCULATE environment variable. We could also
have passed it on the command line.
export CALCULATE

generate.cc: $(NUMBERS) $(CODEGEN)
 perl $(CODEGEN) $(SRCDIR)/$(NUMBERS) > $@

cross-platform/codegen/rules/object-code/codegen-help.txt

Set NUMBERS to the name of a file that contains a list of numbers, one
per line, to pass to the generator. The file generate.cc will be
generated.

cross-platform/codegen/gen_code.pl

require 5.008;

Cross-Platform Support

164

use warnings;
use strict;
use File::Basename;

my $whoami = basename($0);

my $calculate = $ENV{'CALCULATE'} or die "$whoami: CALCULATE is not defined\n";

my $file = shift(@ARGV);
open(F, "<$file") or die "$whoami: can't open $file: $!\n";
my @numbers = ();
while (<F>)
{
 s/\r?\n//;
 if (! m/^\d+$/)
 {
 die "$whoami: each line of $file must be a number\n";
 }
 push(@numbers, $_);
}

print <<EOF
\#include <iostream>
void generate()
{
EOF
 ;

open(P, "$calculate " . join(' ', @numbers) . "|") or
 die "$whoami: can't run calculate\n";
while (<P>)
{
 if (m/^(\d+)\t(\d+)/)
 {
 print " std::cout << $1 << \" squared is \" << $2 << std::endl;\n";
 }
}

print <<EOF
}
EOF
 ;

In order for this to work, the codegen build item must depend on the calculate build item. Ordinarily, abuild will
not allow this since the calculate build item would not be able to be built on the indep platform, which is the only
platform on which codegen is built. To get around this, codegen's Abuild.conf specifies a -platform argument to
its declaration of its dependency on calculate:

cross-platform/codegen/Abuild.conf

name: codegen
platform-types: indep
deps: calculate -platform=native:option=release

Cross-Platform Support

165

The argument -platform=native:option=release tells abuild to make codegen depend on the instance of calculate
built on the first native platform that has the release option, if any; otherwise, it depends on the highest priority
native platform. Note that this will cause the release option of the appropriate platform to be built for calculate
and its dependencies even if they would not have otherwise been built. This is an example of abuild's ability to build
on additional platforms on an as-needed basis. For details on exactly how abuild resolves such dependencies, see
Section 33.6, “Construction of the Build Graph”, page 218.

Notice that this code generator uses an interface variable, in this case $(CALCULATE), to refer to a file in the calculate
build item. Not only is this a best practice since it avoids having us have to know the location of a file in another build
item, but it is actually the only way we can find the calculate program: abuild doesn't provide any way for us to know
the name of the output directory from the calculate build item we are using except through the interface system.
(The value of the ABUILD_OUTPUT_DIR variable would be the output directory for the item currently being built,
not the output directory that we want from the calculate build item.) We also use an interface variable to refer to
the code generator within our own build item, though in this case, it would not be harmful to use $(abDIR_codegen)/
gen_code.pl instead. 3

Finally, look at the prog build item. This build item depends on the codegen build item. Its Abuild.mk defines the
NUMBERS variable as required by codegen, which it lists in its RULES variable. This build item doesn't know or care
about the interface of the lib build item, which has been hidden from it by the reset-all in calculate's after.interface.
(If it wanted to, it could certainly also depend on lib, in which case it would get lib's interface.) In fact, running abuild
ccxx_debug will show that prog's INCLUDES, LIBS, and LIBDIRS variables are all empty:

cross-platform-ccxx_debug.out

abuild: build starting
abuild: prog (abuild-<native>): ccxx_debug
make: Entering directory `--topdir--/cross-platform/prog/abuild-<native>'
INCLUDES =
LIBDIRS =
LIBS =
make: Leaving directory `--topdir--/cross-platform/prog/abuild-<native>'
abuild: build complete

3 Actually, there is something a bit more subtle going on here. If we didn't have an Abuild.interface file or an Abuild.mk file, abuild would not allow
this build item to declare a platform type, and it would automatically inherit its platform type from its dependency or become a special build item of
platform type all, as discussed in Section 33.6, “Construction of the Build Graph”, page 218. In that case, abuild would not allow us to declare
a platform-specific dependency, and although the code generator would still work just fine, this wouldn't be much of an example! The construct
illustrated here is still useful though as this is exactly how it would have to work if there were other values to be exported through Abuild.interface
or any products that needed to be built by this build item itself. For example, if the code generator example had been written in Java instead of perl,
this pattern would have been the only way to achieve the goal.

166

Chapter 25. Build Item Visibility
By default, build items are allowed to refer to other build items directly in their Abuild.conf files subject to certain
scoping rules as described in Section 6.3, “Build Item Name Scoping”, page 28. In some rare instances, in order to
resolve a conflict between what a given build item is supposed to be able to see and which items a given item is
supposed to be seen by, it is necessary to increase the visibility of a build item. In this chapter, we describe a mechanism
for doing this and present a real-world example in which it would be required.

25.1. Increasing a Build Item's Visibility
The Abuild.conf file supports an optional visible-to key has a value consisting of a single scope identifier. It may have
one of the following two forms:

• ancestor-scope.*: the current build item is visible to all build items under the named ancestor-scope. The ances-
tor-scope must be at or above the “grandparent” of the current build item since build items belong by default to the
scope named by the parent build item.

• *: this build item may be seen by any build item.

For example, if the item A.B.C declared itself as visible to A.*, then the items A.P, A.Q.R, or anything else under
A would be allowed to access it directly. Even though it is hidden beneath A.B, access to it would be checked as if it
were directly under A. The A.B.C build item would increase its visibility by adding this line to its Abuild.conf:

visible-to: A.*

Here we describe a more concrete example. The next section demonstrates an actual implementation of the pattern
described here. Suppose you needed to implement a project that contained build items at different levels of classifi-
cation, which we'll call public and sensitive. We want the sensitive build items to be able to see the public ones, but
the public ones should never be allowed to see the sensitive ones. To achieve this, we create an public build tree and
a sensitive build tree, and then we have the sensitive build tree list the public build tree as a tree dependency. The
explanation that follows refers to Figure 25.1, “Build Item Visibility”, page 167.

Build Item Visibility

167

Figure 25.1. Build Item Visibility

B.sensitive can see B.W and B.X because of its scope. B.sensitive can be seen by A.sensitive because of its
visibility.

Suppose you have software components A and B and that A depends on B. Let's say that B has two public subcom-
ponents called B.Q and B.R and that B's Abuild.conf declares those as dependencies, making it a facade build item
for its subcomponents. When A depends on B, it will automatically get B.Q's and B.R's interfaces through B's de-
pendency on them. Now suppose that both A and B have some additional subcomponents that are sensitive. In order
to avoid having the public items even know that the sensitive items exist and to prevent them from ever accidentally
depending on them even when they are being modified in a sensitive environment, we add sensitive subcomponents to
A and B in a completely separate build tree. Suppose B has sensitive subcomponents B.W and B.X. Those need to be
under the scope B so that they can see B.Q and B.R. Now we can create a facade build item called B.sensitive that
depends on B and also on B.W and B.X. Then anyone who depends on B.sensitive can see all four subcomponents
of B. Suppose we have a sensitive version of A called A.sensitive. Unfortunately, by our normal scoping rules,
A.sensitive would not be allowed to depend on B.sensitive because B.sensitive would be hidden beneath B. We
can't move B.sensitive out of B (by calling it something like B_sensitive, for example) since then it would not
be able to depend on B.W and B.X. Instead, we have to have B.sensitive make itself globally visible by adding
visible-to: * to its Abuild.conf. Now any build item that can resolve its name, which by design means only build
items in the sensitive build tree, can declare a dependency directly on B.sensitive. That way, the public A build item
depends on the public B build item, and the sensitive A.sensitive build item depends on the sensitive B.sensitive
build item, and all constraints are satisfied. This pattern can be useful whenever separate build trees are used to add
new private subcomponents to something defined in a different build tree. In this case, the use of a separate tree and
a tree dependency creates what is effectively a one-way dependency gate: items in the sensitive tree can see items
in the public tree, but items in the public tree can't see items in the sensitive tree. The next section demonstrates an
actual implementation of this pattern.

Build Item Visibility

168

25.2. Mixed Classification Example
This example shows a sample implementation of how one might solve certain development problems in a mixed
classification development environment. To avoid any potential confusion, we'll call our two classification levels
“public” and “sensitive.”. These could correspond to different levels of protection of information and could apply to
any environment in which people have to be granted special access in order to use parts of a system. The code is
divided into two separate build trees: public and sensitive. The public tree's root Abuild.conf file is here:

mixed-classification/public/Abuild.conf

tree-name: public
child-dirs: consumers executable processor

The sensitive tree's root Abuild.conf is here:

mixed-classification/sensitive/Abuild.conf

tree-name: sensitive
tree-deps: public
child-dirs: consumers executable processor

If you were in an environment where the sensitive tree were not present, the root of the public tree could be the root of
the forest. In an environment where both trees are available, they can be both be made known to abuild by supplying
a common parent Abuild.conf that lists them both as children. Here is the common parent:

mixed-classification/Abuild.conf

child-dirs: public sensitive

Note that connecting these two trees together is achieved without modifying either tree and without having either tree
know the location of the other.

In this example, we'll demonstrate a very simple message processing system. When a message is received, it is pro-
cessed by a message processor and then dispatched to a series of message consumers. Our system allows message
consumers to be registered with a special message consumer table. Each message consumer is passed a reference to
a message processor. Then, for each message, each consumer processes the message with the message processor and
then does whatever it needs to do with the results.

In the public version of the system, we have some message consumers and a message processor. In the sensitive version
of the system, we want access to the public consumers, but we also want to register some additional consumers that are
only allowed to work in the sensitive environment. In addition, we want to be able to replace the message processor
with a different implementation such that even the public consumers can operate on the messages after processing
them with the sensitive processor. Furthermore, we wish to be able to achieve these goals with as little code duplication
as possible and without losing the ability to run the public version of the system even when operating in the sensitive
environment as this may be important for testing the system. We also wish to protect ourselves against ever accidentally
creating a dependency from a public implementation to a sensitive implementation of any part of the system.

In our sample implementation, each message is an integer, and the message processor receives the integer as input and
returns a string. Rather than having “messages” actually be “received”, we just accept integers on the command line
and pass them through the process/consume loop in the system.

This example may be found in doc/example/mixed-classification. The public code is in the public subdirectory, and
the sensitive code is in the sensitive subdirectory. The example is implemented in Java, but there is nothing about it
that wouldn't work the same way in C or C++. We will study the public area first.

Build Item Visibility

169

In this example, we have a library of consumers and an executable program that calls each registered consumer the
numbers passed in on the command line. The consumers each call the processor function through an interface, an
instance of which is passed to the consumer with each message. The public version of consumer library includes two
consumers. In order for us to allow the sensitive version to add two more consumers and provide a new processor that
completely replaces the one defined in the public version, the processor function's interface and implementation are
separated as we will describe below.

There are several things to note about the dependencies and directory layout. First, observe that the Java Processor
class defined in the processor build item implements a Java interface (not to be confused with an abuild interface)
that is actually defined in the consumers.interface build item in the consumers/interface directory. Here is the
interface from the consumers.interface build itme:

mixed-classification/public/consumers/interface/src/java/com/example/consumers/ProcessorInterface.java

package com.example.consumers;

public interface ProcessorInterface
{
 public String process(int n);
}

Here is its implementation from the processor build item:

mixed-classification/public/processor/src/java/com/example/processor/Processor.java

package com.example.processor;

import com.example.consumers.ProcessorInterface;

public class Processor implements ProcessorInterface
{
 public String process(int n)
 {
 return "public processor: n = " + n;
 }
}

This means that the processor build item depends on consumers and the consumers build items do not depend
on processor. This helps enforce that the implementation of the processor function can never be a dependency of
the consumers (as that would create a circular dependency), thus allowing it to remain completely separate from the
consumer implementations.

mixed-classification/public/processor/Abuild.conf

name: processor
platform-types: java
deps: consumers

mixed-classification/public/consumers/Abuild.conf

name: consumers

Build Item Visibility

170

child-dirs: interface c1 c2
deps: consumers.c1 consumers.c2

The consumers themselves accept a ProcessorInterface instance as a parameter, as you can see from the consumer
interface:

mixed-classification/public/consumers/interface/src/java/com/example/consumers/Consumer.java

package com.example.consumers;

public interface Consumer
{
 public void register();
 public void consume(ProcessorInterface processor, int number);
}

Next we will study the executable. If you look at the executable build item, you will observe that it depends on
processor and executable.entry:

mixed-classification/public/executable/Abuild.conf

name: executable
platform-types: java
child-dirs: entry
deps: executable.entry processor

Its Main.java is very minimal: it just invokes Entry.runExecutable passing to it an instantiated Processor object and
whatever arguments were passed to main:

mixed-classification/public/executable/src/java/com/example/executable/Main.java

package com.example.executable;

import com.example.processor.Processor;
import com.example.executable.entry.Entry;

public class Main
{
 public static void main(String[] args)
 {
 Entry.runExecutable(new Processor(), args);
 }
}

It is important to keep this main routine minimal because we will have to have a separate main in the sensitive area as
that is the only way we can have the sensitive version of the code register sensitive consumers prior to calling main. 1

If this were C++, the inclusion of the sensitive consumers would be achieved through linking with additional libraries.
In Java, it is achieved by adding additional JAR files to the classpath. In either case, with abuild, it is achieved by

1 Well, it's not really the only way. You could also do something like having a RegisterConsumers object that both versions of the code would
implement and provide in separate jar files much as we do with the Processor object. One reason for doing it this way, though, is that it makes
the example easier to map to languages with static linkage. In other words, we're trying to avoid doing anything that would only work in Java to
make the example as illustrative as possible. This is, after all, not a Java tutorial.

Build Item Visibility

171

simply adding additional dependencies to the build item. We will see this in more depth when we look at the sensitive
version of the code.

Turning our attention to the public executable.entry build item, we can see that our Entry.java file has a static
initializer that registers our two consumers, C1 and C2: 2

mixed-classification/public/executable/entry/src/java/com/example/executable/entry/Entry.java

package com.example.executable.entry;

import com.example.consumers.ProcessorInterface;
import com.example.consumers.Consumer;
import com.example.consumers.ConsumerTable;
import com.example.consumers.c1.C1;
import com.example.consumers.c2.C2;

public class Entry
{
 static
 {
 new C1().register();
 new C2().register();
 }

 public static void runExecutable(ProcessorInterface processor,
 String args[])
 {
 for (String arg: args)
 {
 int n = 0;
 try
 {
 n = Integer.parseInt(arg);
 }
 catch (NumberFormatException e)
 {
 System.err.println("bad number " + args[0]);
 System.exit(2);
 }

 for (Consumer c: ConsumerTable.getConsumers())
 {
 c.consume(processor, n);
 }
 }
 }
}

Even though no place else in the code has to know about C1 and C2 specifically, we do have to register them explicitly
with the table of consumers so that the rest of the application can use them. The main runExecutable function parses

2 If this were a C++ program and portability to Windows were not required, we could omit this static initializer block entirely and put the static
initializers in C1 and C2 themselves as long as we used the whole archive flag (see Section 26.1, “Whole Library Example”, page 176) with
those libraries. As with C++, however, there is no clean and portable way to force static initializers to run in a class before the class is loaded.

Build Item Visibility

172

the command-line arguments and then passes each one along with the Processor object to each consumer in turn.
Adding additional consumers would entail just making sure that they are registered. Observe in the source to one of
the consumers how we register the consumer in the consumer table:

mixed-classification/public/consumers/c1/src/java/com/example/consumers/c1/C1.java

package com.example.consumers.c1;

import com.example.consumers.ProcessorInterface;
import com.example.consumers.Consumer;
import com.example.consumers.ConsumerTable;

public class C1 implements Consumer
{
 public void register()
 {
 ConsumerTable.registerConsumer(this);
 }

 public void consume(ProcessorInterface processor, int n)
 {
 System.out.println("public C1: " + processor.process(n));
 }
}

The consumer table is a simple vector of consumers:

mixed-classification/public/consumers/interface/src/java/com/example/consumers/ConsumerTable.java

package com.example.consumers;

import java.util.Vector;

public class ConsumerTable
{
 static private Vector<Consumer> consumers = new Vector<Consumer>();

 static public void registerConsumer(Consumer h)
 {
 consumers.add(h);
 }

 static public Vector<Consumer> getConsumers()
 {
 return consumers;
 }
}

Now we will look at the sensitive version of the code. We have the same three subdirectories in sensitive as in public. In
our consumers directory, we define new consumers C3 and C4. They are essentially identical to the public consumers
C1 and C2. The processor directory defines the sensitive version of the Processor class:

mixed-classification/sensitive/processor/src/java/com/example/processor/Processor.java

Build Item Visibility

173

package com.example.processor;

import com.example.consumers.ProcessorInterface;

public class Processor implements ProcessorInterface
{
 public String process(int n)
 {
 return "sensitive processor: n*n = " + n*n;
 }
}

Note that the class name is the same as in the public version, which means that the public and sensitive versions
cannot be used simultaneously in the same executable. Also observe that the name of the build item is actually
processor.sensitive, to make it different from processor, and that the build item sets its visibility to * so that it
can be a dependency of the sensitive version of the executable:

mixed-classification/sensitive/processor/Abuild.conf

name: processor.sensitive
platform-types: java
visible-to: *
deps: consumers

In this particular example, there's no reason that we couldn't have given the build item a public name as there are no
subcomponents of the public processor build item that the sensitive one needs. In a real situation, perhaps this would
be the real processor build item and the public one would be called something like processor-stub. In any case,
all abuild cares about is that the build items have different names.

Looking at the sensitive version of the executable, we can observe that there is no separate sensitive version of the Entry
class. This effectively means that we are using the public main routine even though we have sensitive consumers. This
provides an example of how to implement the case that people might be inclined to implement by having conditional
inclusion of sensitive JAR files or conditional linking of sensitive libraries. Since abuild doesn't support doing anything
conditionally upon the existence of a build item or even testing for the existence of a build item, this provides an
alternative approach. This approach is actually better because it enables the public version of the system to run intact
even in the sensitive environment. After all, if the system automatically used the sensitive handlers whenever they
were potentially available, we couldn't run the public version of the test suite in the sensitive environment. This would
make it too easy, while working in the sensitive environment, to make modifications to the system that break the
system in a way that would only be visible in the public version. By pushing what would have been main into a
library, we can avoid duplicating the code. If you look at the actual build item and code in the executable directory,
you will see that the build item is called executable.sensitive and that it depends on consumers.sensitive and
processor.sensitive, both of which have made themselves visible to * in their respective Abuild.conf files. We saw
processor.sensitive's Abuild.conf file above. Here is consumers.sensitive's Abuild.conf:

mixed-classification/sensitive/consumers/Abuild.conf

name: consumers.sensitive
visible-to: *
child-dirs: c3 c4
deps: consumers.c3 consumers.c4

Also observe that executable.sensitive depends on executable.entry just like the public version of the executable
did:

Build Item Visibility

174

mixed-classification/sensitive/executable/Abuild.conf

name: executable.sensitive
platform-types: java
deps: executable.entry consumers.sensitive processor.sensitive

Looking at the sensitive executable's Main.java, we can see that it is essentially identical to the public version except
that it registers some additional consumers that were not available in the public version:

mixed-classification/sensitive/executable/src/java/com/example/executable/Main.java

package com.example.executable;

import com.example.processor.Processor;
import com.example.consumers.c3.C3;
import com.example.consumers.c4.C4;
import com.example.executable.entry.Entry;

public class Main
{
 static
 {
 new C3().register();
 new C4().register();
 }

 public static void main(String[] args)
 {
 Entry.runExecutable(new Processor(), args);
 }
}

Here are some key points to take away from this:

• This example illustrates that it is possible to extend functionality in an area that uses the original area as a tree
dependency with very little duplication of code. This is partially achieved by thinking about our system in a different
way: rather than having a public program behave differently in a sensitive environment, we move the main entry
point into a library. This completely eliminates the whole problem of conditional linking or making any other
decisions conditionally upon the existence of particular build items or upon compile-time flags that differ across
different environments. In fact, the top of the public tree would happily function as the root of the forest if the
sensitive tree and their common parent Abuild.conf file were not present on the system.

• This example shows an approach to separating interfaces from implementations that makes it possible, without
conflict, to completely replace an implementation at runtime. This is achieved by having the implementation be a
dependency of the final executable and having the rest of the system depend on only the interfaces.

• Although, in this example, the sensitive versions of the consumers don't actually access any private build items from
the public version of the code, the use of the build item name consumers.sensitive and the visible-to key would
make it possible for them to do so.

• Creating run-time connections between objects without creating any compile-time connections requires some addi-
tional infrastructure to be laid. In some languages and compilation environments, this can be done through use of
static initializers combined with techniques to ensure that they get run even if there are no explicit references to the

Build Item Visibility

175

classes in question. To keep things both simple and portable, it is still possible to use this pattern by performing
some explicit registration step prior to the invocation of the main routine.

176

Chapter 26. Linking With Whole
Libraries
In C and C++, most environments create library archives that consist of a collection of object files. Most linkers only
link object files from libraries into executables if there is at least one function in the object file that is in the calling
chain of the executable. In other words, if an object file in a library appears not to contain any code that is ever accessed,
that object file is not included in the final executable. Abuild provides a way to force inclusion of all object files in a
given library for underlying systems in which this is supported.

26.1. Whole Library Example

There are some instances in which it may be desirable to tell the linker to include all the object files from a library.
Common examples include times when static libraries are converted into shared libraries or when an object file is self-
contained but contains a static initializer whose side effects are important. The doc/example/whole-library directory
contains an example of doing this. The lib1 and lib2 directories both contain self-contained classes and have static
variables that call those classes' constructors:

whole-library/lib1/thing1.hh

#ifndef __THING1_HH__
#define __THING1_HH__

class Thing1
{
 public:
 Thing1();
 virtual ~Thing1();
};

#endif // __THING1_HH__

whole-library/lib1/thing1.cc

#include "thing1.hh"

#include <iostream>

static Thing1* static_thing = new Thing1;

Thing1::Thing1()
{
 std::cout << "in thing1 constructor" << std::endl;
}

Thing1::~Thing1()
{
 std::cout << "in thing1 destructor" << std::endl;
}

Linking With Whole Libraries

177

whole-library/lib2/thing2.hh

#ifndef __THING2_HH__
#define __THING2_HH__

class Thing2
{
 public:
 Thing2();
 virtual ~Thing2();
};

#endif // __THING2_HH__

whole-library/lib2/thing2.cc

#include "thing2.hh"

#include <iostream>

static Thing2* static_thing = new Thing2;

Thing2::Thing2()
{
 std::cout << "in thing2 constructor" << std::endl;
}

Thing2::~Thing2()
{
 std::cout << "in thing2 destructor" << std::endl;
}

Neither library is referenced by main.cc (in bin):

whole-library/bin/Abuild.conf

name: main
platform-types: native
deps: thing1 thing2

whole-library/bin/main.cc

#include <iostream>

int main()
{
 std::cout << "In main" << std::endl;
 return 0;
}

Linking With Whole Libraries

178

Therefore, the linker would not ordinarily link them in even with the dependency on both library build items.

In this example, we force lib1 to be linked in but not lib2. This is done by adding the variable WHOLE_lib_thing1
(since thing1 is the name of the library) to lib1's Abuild.interface:

whole-library/lib1/Abuild.interface

INCLUDES = .
LIBDIRS = $(ABUILD_OUTPUT_DIR)
declare WHOLE_lib_thing1 boolean
WHOLE_lib_thing1 = 1
LIBS = thing1

On systems that support this, defining this variable causes the corresponding library to be linked in its entirety into any
executables that use the library. This facility may not be supported by all compilers. In particular, it is not supported
for Microsoft Visual C++ in versions at least through .NET 2005, in which case setting this variable has cause an error.

For cases in which some users of a library may want to link in the whole library and others may not, it is also possible
to set the WHOLE_lib_libname variable in an Abuild.mk. For example, if you were converting a static library to a
shared library, you might want to do this in the shared library build item's Abuild.mk rather than the static library's
Abuild.interface file. That would prevent other users of the static library from needlessly linking with the whole library.

We do not set this variable for lib2:

whole-library/lib2/Abuild.interface

INCLUDES = .
LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = thing2

This means that its static initializer will not be linked in on any system. On a system that supports whole-library linking,
the main program generates this output:

whole-library.out

in thing1 constructor
In main

This output includes the static initializer from Thing1 but not from Thing2.

Note that, in order to be truly portable, an application would have to contain explicit code that accessed the static
initializers. We illustrate this in some Java code in Section 25.2, “Mixed Classification Example”, page 168. The same
technique used for that example would work in C or C++ code.

179

Chapter 27. Opaque Wrappers
One of the most important features of abuild is that a given build item automatically inherits the interfaces of not only
all of its direct dependencies but of its indirect dependencies as well. There may be instances, however, in which this
is undesirable. We present such a case here.

27.1. Opaque Wrapper Example
This example shows how we can create a C/C++ build item that implements an “opaque wrapper” around some other
interface. In the doc/example/opaque-wrapper directory, there are three directories: hidden, public, and client. The
hidden item implements some interface. The public item implements a wrapper around hidden's interface, but uses
hidden privately: only its source files, not its header files, access files from hidden:

opaque-wrapper/public/Public.hh

#ifndef __PUBLIC_HH__
#define __PUBLIC_HH__

class Public
{
 public:
 void performOperation();
};

#endif // __PUBLIC_HH__

opaque-wrapper/public/Public.cc

#include "Public.hh"
#include <Hidden.hh>

void
Public::performOperation()
{
 Hidden h;
 h.doSomething();
 h.doSomethingElse();
}

The intention is that users of public should not be able to access any parts of hidden at all. The client directory contains
an example of a build item that uses public. It doesn't include any files from hidden, and if it were to try, it would get
an error since the hidden directory is not in its include path. However, it still must link against the hidden library. The
public build item achieves this by resetting the INCLUDES interface variable in an after-build file:

opaque-wrapper/public/Abuild.interface

INCLUDES = .
LIBDIRS = $(ABUILD_OUTPUT_DIR)
LIBS = opaque-public

Opaque Wrappers

180

after-build hide-hidden.interface

opaque-wrapper/public/hide-hidden.interface

Prevent those that depend upon us from seeing the INCLUDES that we saw
reset INCLUDES
Re-insert our own include directory into the public interface
INCLUDES = .

This way, items that depend on public will see only this item's includes and not those of the items it depends on. Here
is the output of abuild ccxx_debug when run from the client directory:

opaque-wrapper-ccxx_debug.out

abuild: build starting
abuild: opaque-client (abuild-<native>): ccxx_debug
make: Entering directory `--topdir--/opaque-wrapper/client/abuild-<native>'
INCLUDES = ../../public
LIBDIRS = ../../public/abuild-<native> ../../hidden/abuild-<native>
LIBS = opaque-public opaque-hidden
make: Leaving directory `--topdir--/opaque-wrapper/client/abuild-<native>'
abuild: build complete

As you can see, there is no reference to the hidden/include directory even though its library and library directory are
present in opaque-client's compilation environment.

181

Chapter 28. Optional Dependencies
In widely distributed systems, it is often the case that a particular component may be able to be configured to work
in different ways depending on whether some optional functionality is present. There are many ways to support this
in any given software system, including having optional capabilities register themselves with some consumer of those
capabilities as with our mixed classification example (see Section 25.2, “Mixed Classification Example”, page 168).
There are some situations where, for whatever reason, the onus of determining how to behave must lie completely with
the consumer of an optional capability rather than the supplier of the capability. This could happen if, for example,
the supplier of the capability is completely unaware of the consumer. It could also happen if, because of the way the
software is architected, the logic of how the consumer uses the producer must like with the consumer. To support these
cases, abuild supports the use of optional dependencies.

28.1. Using Optional Dependencies
Both item dependencies and tree dependencies may be declared as optional by placing the -optional option after
the item or tree name in the deps or tree-deps declaration in the Abuild.conf file. If an optional tree dependency is
not found, abuild simply ignores the optional tree dependency. If an optional item dependency is declared, abuild
will create a local (non-inheriting) boolean interface variable called ABUILD_HAVE_OPTIONAL_DEP_item where
item is the name of the item that was declared as an optional dependency. If the optional dependency is found, this
variable will have a true value, and abuild will process the dependency normally. If the optional dependency is not
found, this variable will have a false value, and abuild will otherwise ignore the optional dependency.

Sometimes an optional dependency may be satisfied by a build item or tree that may not always be present. In this
case, you may find that using -optional when listing the child directory that contains the item or tree when it's present
makes it possible to use the exact same abuild configuration whether or not the optional item is present. With this
mode of use, a capability may be turned on or off simply by including or excluding a particular directory in a build.
Although there are certainly valid scenarios for this style of operation, this feature has a high potential for abuse, so
you should consider carefully whether it is the right solution to your problem. It is possible to create software that may
behave differently based on combinations of presence or absence of optional features. Such software can become very
difficult to maintain and test. Ideally, if you have optional capabilities that are configured in this way, they should be
lightweight and independent from each other. However, abuild leaves this choice up to you and provides you with this
capability. You are, of course, free to use it or not as you choose.

28.2. Optional Dependencies Example
To illustrate optional dependencies, we have a very simple C++ program that calls a function called xdriver if the
xdriver build item, which supplies it, is present. The tree containing this build item can be found at optional-dep/prog.
Here is its Abuild.conf file:

optional-dep/prog/Abuild.conf

tree-name: system
tree-deps: xdrivers -optional
name: prog
platform-types: native
deps: xdriver -optional

Observe that there is an optional tree dependency declared on a build tree called xdrivers and also an optional item
dependency declared on the build item called xdriver.

In the implementation of this build item, we use the Abuild.interface file to define a preprocessor symbol if the xdriver
build item is present. Here is the Abuild.interface file:

Optional Dependencies

182

optional-dep/prog/Abuild.interface

if ($(ABUILD_HAVE_OPTIONAL_DEP_xdriver))
 XCPPFLAGS = -DHAVE_XDRIVER
endif

This is one approach, but it is by no means the only approach. Use of a preprocessor symbol in this way can be
dangerous because there is no mechanism to trigger a rebuild if its value changes. However, as the presence of absence
of optional dependencies is likely to be relatively fixed for any given build environment, use of a preprocessor symbol
may be appropriate. Since the interface variable is, like all interface variables, exported to the backend, we could have
also done something based on its value in the Abuild.mk file. There, the value would have a value of either 1 or 0 as with
all boolean interface variables. This would be appropriate if we didn't want the results of whatever we do to be visible
to our dependencies. In this case, we use the Abuild.interface file, and the Abuild.mk file looks completely normal:

optional-dep/prog/Abuild.mk

TARGETS_bin := prog
SRCS_bin_prog := prog.cc
RULES := ccxx

Let's look at the source code to the program. It's not clever at all, but it illustrates how this mechanism works. Here
is prog.cc:

optional-dep/prog/prog.cc

#ifdef HAVE_XDRIVER
include <xdriver.hh>
#endif

#include <iostream>

int main()
{
 std::cout << 3 << " = " << 3 << std::endl;
#ifdef HAVE_XDRIVER
 std::cout << "xdriver(3) = " << xdriver(3) << std::endl;
#else
 std::cout << "xdriver not available" << std::endl;
#endif
 return 0;
}

To build this without the optional build tree present, copy the file optional-dep/Abuild.conf.without to optional-dep/
Abuild.conf. Here is that file:

optional-dep/Abuild.conf.without

child-dirs: prog

Then run abuild from the optional-dep/prog directory. This results in the following output:

Optional Dependencies

183

optional-without.out

abuild: build starting
abuild: prog (abuild-<native>): all
make: Entering directory `--topdir--/optional-dep/prog/abuild-<native>'
Compiling ../prog.cc as C++
Creating prog executable
make: Leaving directory `--topdir--/optional-dep/prog/abuild-<native>'
abuild: build complete

The resulting prog executable produces this output:

optional-without-run.out

3 = 3
xdriver not available

Now let's try this again with the optional tree present. First, we have to copy optional-dep/Abuild.conf.with to option-
al-dep/Abuild.conf. Here is that file:

optional-dep/Abuild.conf.with

child-dirs: prog xdriver

This adds the xdriver directory as a child. This directory contains what are effectively “extra drivers” to be used by
prog. Here are the header and source to the xdriver function:

optional-dep/xdriver/xdriver.hh

#ifndef __XDRIVER_HH__
#define __XDRIVER_HH__

int xdriver(int);

#endif // __XDRIVER_HH__

optional-dep/xdriver/xdriver.cc

#include <xdriver.hh>

int xdriver(int val)
{
 return val * val;
}

Next, we have to do a clean build since, as pointed out above, there's no other mechanism for abuild to notice that
the tree has appeared and the preprocessor symbol has since the last build. (We could implement a dependency on
a make variable if we wanted to. See Section 22.5, “Dependency on a Make Variable”, page 142 for an example of
doing this.) Once we have set up the new Abuild.conf and run abuild -c all to clean the tree, we can run abuild from
prog again. This results in the following abuild output:

Optional Dependencies

184

optional-with.out

abuild: build starting
abuild: xdriver (abuild-<native>): all
make: Entering directory `--topdir--/optional-dep/xdriver/abuild-<native>'
Compiling ../xdriver.cc as C++
Creating xdriver library
make: Leaving directory `--topdir--/optional-dep/xdriver/abuild-<native>'
abuild: prog (abuild-<native>): all
make: Entering directory `--topdir--/optional-dep/prog/abuild-<native>'
Compiling ../prog.cc as C++
Creating prog executable
make: Leaving directory `--topdir--/optional-dep/prog/abuild-<native>'
abuild: build complete

Running the resulting prog program in this case results in this output:

optional-with-run.out

3 = 3
xdriver(3) = 9

This time, you can see that the xdriver function was available.

185

Chapter 29. Enhancing Abuild with
Plugins
 This chapter is geared toward people who may extend or enhance abuild by adding additional rules, platforms, or
compilers. Anyone interested in extending abuild in this way should also be familiar with the material covered in
Chapter 30, Best Practices, page 205. If you think you may need to modify the main code of abuild itself, please
see also Chapter 33, Abuild Internals, page 215. This section covers the most common uses for plugins. Examples
of each topic presented may be found in Section 29.5, “Plugin Examples”, page 190.

29.1. Plugin Functionality

Plugins are build items that are named in the build tree root's Abuild.conf in the plugins key. The list of which items are
plugins is not inherited through either backing areas or tree dependencies. In other words, if a tree your tree depends
on declares something as a plugin, it does not automatically make you get it as a plugin. The same applies to backing
areas, but in practice, the list of plugins is generally effectively inherited because your local build tree's Abuild.conf
is typically a copy of its backing area's Abuild.conf, assuming your partially populated build tree was checked out of
the same version control system. The non-inheritance of plugin status through tree dependencies is appropriate: since
plugins can change abuild's behavior significantly, it should be possible for a given build tree to retain tight control
over which plugins are active and which are not. For example, a build tree may include a plugin that enforces certain
coding practices by default, and use of this build tree as a tree dependency should not necessarily cause that same set
of restrictions to be applied to the dependent tree. Plugins themselves are ordinary build items and can be resolved in
tree dependencies and backing areas just like any other build item. This makes it possible for a tree to provide a plugin
without using it itself or for a build tree to not use all plugins used by its tree dependencies.

Plugins are loaded by abuild and its backends in the order in which they are listed in a root build item's Abuild.conf.
Usually this doesn't matter, but if multiple plugins add native compilers the order in which plugins are listed can have
an effect on which platforms are built by default.

Plugins are subject to the following constraints beyond those imposed upon all build items:

• Plugins may not have any forward or reverse dependencies. It is good practice to put plugin build items in a private
namespace (such as prefixing their names with plugin.) to prevent people from accidentally declaring depen-
dencies on them.

• Plugins may not belong to a platform type, have a build file, or have an Abuild.interface file.

Plugins may contain the following items that are not supported for ordinary build items:

• Abuild interface code loaded from plugin.interface

• A platform-types file to add new object-code platform types

• A list_platforms perl script to add new object-code platforms

• toolchains directories containing additional compiler support files

• Additional make code in preplugin.mk that is loaded by all make-based build items before their own Abuild.mk
files are loaded

• Additional make code in plugin.mk that is loaded by all make-based build items after their own Abuild.mk files
are loaded

Enhancing Abuild with Plugins

186

• Additional Groovy code in preplugin.groovy that is loaded by all Groovy-based build items before their own
Abuild.groovy files are loaded

• Additional Groovy code in plugin.groovy that is loaded by all Groovy-based build items after their own
Abuild.groovy files are loaded

• Ant hook code in plugin-ant.xml that is used as a hook file by all build items using the deprecated xml-based ant
framework.

• Arbitrary hook code in preplugin-ant.xml that is imported prior by all build items using the deprecated xml-based
ant framework prior to reading Abuild-ant.properties.

Additionally, plugins may have rules directories containing additional make or Groovy rules files, as is true with
ordinary build items.

Although plugins themselves can never be dependencies of other build items or have dependencies of their own, they
are still subject to abuild's integrity guarantee. In the case of plugins, this means that it is impossible to have an item
in your dependency tree whose build tree declares a plugin that you are shadowing in your local tree. One way to
avoid having this become a significant limitation is to keep your plugins in a separate build tree that others declare
as a tree dependency.

29.2. Global Plugins

It is possible for a build tree to declare one or more of its plugins to be global. The effect of declaring an item to be
a global plugin is the same as having it be listed as a plugin for every build tree in the forest. 1 Global plugins should
be used extremely sparingly, though there are some cases in which their use may be appropriate. For example, if a
particular project requires certain environment setup to be done, it would be possible to create a global plugin that
checks to make sure it is correct. It is often also appropriate to declare platform or platform type plugins globally so
that dependent trees can be built with the declared compiler plugin.

A build tree can declare one of its plugins to be global by following the plugin name with -global in the plugins entry
of Abuild.conf, as in

plugins: global-plugin -global

When a build item is declared as a global plugin, abuild disregards access checks based on tree dependencies. In this
sense, the affect of global plugins may “flow backwards” across tree dependencies. This is yet another reason that they
should be used only for enforcing project-wide policy.

29.3. Adding Platform Types and Platforms
When abuild starts up, it reads its internal information about supported platforms and platform types. It then reads
additional information from plugins, which it combines with its built-in information. This section contains information
about the specific formats of the directives used to add platform types and platforms to abuild.

Platform type information is read from a plain text file that contains platform type declarations. Information about
platforms is obtained by running a program, usually written in Perl. The reason for putting platform type information
in a file and platform information in a program is that the list of platform types should be static for a given build tree,
while the list of available platforms is a function of what the build host can provide. Abuild automatically skips build

1 In fact, this is how abuild implements this internally. As such, certain error conditions in global plugins may be repeated once for each build
tree. This is unfortunate, but fixing it doesn't seem worth the trouble for reporting what are likely to be infrequent problems with what is likely
to be a rarely used feature.

Enhancing Abuild with Plugins

187

items that belong to a valid platform type that happens to have no platforms in it, but if it encounters a build item with
invalid platform types, it considers that an error.

29.3.1. Adding Platform Types
Of the target types that abuild supports, the only one for which additional platform types and platforms may be specified
is the object-code target type. Platform types are declared in a file called platform-types. Abuild looks for this file
first in its own private directory and then at the root of each declared plugin. The platform-types file contains a single
platform type declaration on each line. Comment lines starting with the # character and blank lines are ignored. Each
line may have the following syntax:

platform-type new-platform-type [-parent parent-platform-type]

Platform type names may contain only alphanumeric characters, underscores, and dashes.

You may optionally specify another previously-declared object-code platform type as the new platform type's parent.
If a platform type is declared without a parent platform type, it has indep as its implicit parent. (Note that indep may
not be declared explicitly as a parent; only other object-code platform types may be declared are parents.) Declaring
a parent platform type means that any platform in the new platform type may link against any platform in the parent
platform type. It is up to the creator of the platform types to ensure that this is actually the case.

One example use of parent platform types would be to implement a base platform type for a particular environment
and then to create derived platform types that refine some aspect of the base platform type. For example, this could
be used to overlay additional include directories or libraries on top of support for an embedded operating system to
support selective hardware. It would also be possible to create platform types that refine the native platform type
for specific circumstances. Most uses of parent platform types could be achieved in some other way, such as through
use of conditionals in Abuild.interface or Abuild.mk files or through use of pass-through build items with multiple
dependencies, but when used properly, parent platform types can reduce the number of times common code has to be
recompiled for different platform types.

The ability to specify parent platform types was introduced in abuild 1.1.4 and is closely related to platform type
compatibility as discussed in Section 24.2, “Dependencies and Platform Compatibility”, page 157. It's possible that a
future version of abuild may further generalize the ability to create compatibility relationships among platform types.

29.3.2. Adding Platforms
Since platforms are, by their nature, dynamic, abuild runs a program that outputs platform declarations rather than
reading them from a file. This makes it possible for the existence of a platform to be conditional upon the existence
of a specific tool, the value of an environment variable, or other factors. To get the list of platforms, abuild runs a
program called list_platforms. Abuild invokes list_platforms with the following arguments:

list_platforms [--windows] --native-data os cpu toolset

The --windows option is only present when abuild is running on a Windows system. The three options to --native-data
provide information about the default native platform. Most compiler plugins will not need to use this information
since there is special way to add a native platform, as discussed below.

To discover new platforms, abuild first runs the list_platforms program in its own private directory, and then it runs
any list_platforms programs it finds at the root directories of any plugins. On a Windows system, abuild explicitly
invokes the list_platforms program as perl list_platforms options. For this reason, to support portability to a
Windows system, list_platforms programs must be written in perl. If necessary, a future version of abuild may provide
a mechanism to make writing list_platforms programs in other languages. Note that abuild passes the --windows
flag to list_platforms when running on Windows. This not only saves the list_platforms program from detecting

Enhancing Abuild with Plugins

188

Windows on its own but is actually necessary since list_platforms couldn't tell on its own whether it is being run to
support a native Windows build of abuild or whether it is being run to support a Cygwin build of abuild. 2

Each line of output of list_platforms declares either a new platform or a new native compiler, which implies a new
platform. A given platform may be declared exactly one time across abuild's internally defined platforms and plug-
ins. When a platform type contains multiple platforms, unless overridden, abuild always chooses to build on the last
platform declared that belongs to a given platform type. Since plugins are evaluated in the order in which they are de-
clared, that means that platforms declared in later plugins can override earlier ones as well as abuild's internal platform
list with respect to determining which platforms will be built by default. 3 When specifying a new platform or local
compiler, the list_platforms program may include the option -lowpri to indicate that this is a low priority platform
or native compiler. This will cause the new platform to be added with lower priority than previously declared compil-
ers including the built-in ones. Such compilers will only be chosen if explicitly selected. The user can further refine
the choice of which platforms are built, including selecting low priority compilers and platforms, by using platform
selectors (see Section 24.1, “Platform Selection”, page 155).

Each line of output of list_platforms must take one of the following forms:

platform [-lowpri] new-platform -type platform-type
native-compiler [-lowpri] compiler[.option]

By convention, each native compiler should support a platform with no options, a platform with the debug option,
and a platform with the release option. The default should be to select the platform with no options, which means
the list_platforms program should output platforms with no options last. The platform with no options should provide
both debugging and optimization flags. The debug platform should omit all optimization flags, and the release
platform should omit all debugging flags. For normal, everyday development, it generally makes sense to have both
debugging and optimization turned on. The reason to have debugging turned on is that it makes it possible to do light
debugging in a debugger even with optimized code. The reason to have optimization turned on is so that any problems
introduced by the optimizer and additional static analysis that the compiler may do when optimizing will be enabled
during normal development. Since optimized code is harder to debug in a symbolic debugger, the debug version
of a platform omits all optimization. Since it is often desirable to ship code without debugging information in it, the
release version of a platform omits all debug information.

These options only define the default behavior. It is still possible to override debugging and optimization information
on a per-file basis or globally for a build item in Abuild.mk (see Section 18.2.1, “C and C++: ccxx Rules”, page 95).
Note that on some platforms (such as Windows with Visual C++), mixing debugging and non-debugging code may
not be reliable. On most UNIX platforms, it works fine to mix debugging and non-debugging code.

When declaring a platform, all platform types that contain the platform must have already been declared.

Note that object code platform names take the form os.cpu.toolset.compiler[.option]. When declaring a
platform with the native-compiler directive, abuild automatically constructs a platform name by using the na-
tive values for os, cpu, and toolset. This saves every list_platforms program from having to determine this in-
formation.

29.4. Adding Toolchains
For a compiler to be used by abuild, it must be named in an abuild platform. The platform can be added using either
the platform or native-compiler directive as appropriate in the output of a list_platforms command.

2 Note that Cygwin is not Windows. Cygwin is really more like a UNIX environment. Although abuild uses Cygwin to provide make and other
UNIX-like tools, the Windows abuild executable is a native Windows application. If you were to compile a Cygwin version of abuild, it would not
consider itself to be running in Windows and would not invoke list_platforms with the --windows option. That said, there are a few pieces of code
in the periphery of abuild that assume that, if we're in a Cygwin environment, it is to support Windows. These are all commented as such. Those
parts of the code would need to change if someone were to attempt to package abuild for Cygwin.
3 Note, however, that the --list-platforms option shows highest priority platforms first, which effectively means that it shows the user platforms
in the opposite of their declaration order.

Enhancing Abuild with Plugins

189

To add a new compiler toolchain to abuild, in addition to declaring the native compiler or platform to make abuild try
to use it, you must create a file file called compiler.mk where compiler is the name of the compiler that is being
added, and place this file in the toolchains directory of a plugin. Abuild's internal toolchains are under make/toolchains.
The best way to learn how to write a toolchain is to read existing ones. Most compiler toolchains will be designed to
support C and C++ compilation and are therefore used by the ccxx rules. Details on the requirements for such toolchains
can be found in rules/object-code/ccxx.mk in the abuild distribution (Appendix I, The ccxx.mk File, page 306).

Abuild has some rudimentary support for allowing you to force compilation to generate 32-bit code or 64-bit code on
systems that can generate both types of code. As of abuild 1.1, this functionality is only supported for the gcc compiler.
If you are writing a plugin for a native compiler, you can check for the value of the variables ABUILD_FORCE_32BIT
or ABUILD_FORCE_62BIT and adjust your compilation commands as necessary. You can find an example of doing
this in make/toolchains/gcc.mk in the abuild distribution. On Linux-based Intel and Power PC platforms, abuild will
also use these variables to change the platform string, which makes it possible to use 64-bit systems to build 32-bit
code that can be used natively without any special steps by 32-bit systems. With an appropriate configured toolchain,
you can also build 64-bit code on a 32-bit system, though such code would most likely not be able to be run natively
on the 32-bit system.

Once you have written a support file for a new compiler, you will need to verify to make sure that it is working properly.
A verification program is included with abuild: the program misc/compiler-verification/verify-compiler can be run to
verify your compiler. This program creates a build tree that contains a mixture of static libraries, shared libraries, and
executables and puts those items in the platform type of your choice. It then builds them with the specified compiler.
You provide the path to the build tree containing the plugin, the name of the plugin, the platform type, and the compiler.
The program can be used with either native compilers or non-native compilers. It also makes it very clear whether
everything is working or not. Please run verify-compiler --help and see misc/compiler-verification/README.txt for
additional details.

Ordinarily, a toolchain in platform type native is a native compiler, and a toolchain in a platform type other than
native is a cross-compiler. There are, however, some instances in which it may make sense to have something in
platform type native be treated as a cross compiler: specifically, you will want to do this when the compiler cannot
create executables that run on your current platform. Here are some examples of where this may occur:

• You are writing a compiler plugin for a static analyzer that is a drop-in replacement for the compiler but that produces
reports instead of actual executables

• You are building 64-bit executables on a 32-bit system

• You are cross-compiling for a different architecture of the same operating system or at least of an operating system
that is essentially compatible with your code base and could just as well support a native compiler; e.g. executables
for a low-memory or slow embedded Linux without a native development toolchain might be built using a regular
desktop Linux environment and a cross compiler

Most of abuild will work just fine if the compiler you add to the native platform type is actually a cross compiler,
but there are two notable exceptions: the autoconf rules, and the verify-compiler program. For the autoconf rules,
you just need to make sure ./configure gets executed with some --host option. This can be done by simply adding
this single line:

CONFIGURE_ARGS += --host=non-native

to your compiler.mk file. Passing some value to --host that doesn't match what autoconf determines your current
host to be tells autoconf that you are cross compiling. There's nothing special about the specific value “non-native”.
When running verify-compiler, you will have to pass the --cross option to the verify-compiler command so that
it will ask you to run the test executables instead of running them itself. The --cross option is not required if your
new compiler is not in the native platform type. In this case, abuild will automatically figure out that it is a cross
compiler, just as it does in the autoconf rules. Although these are the only cases within abuild that care whether the
compiler can create native executables, you may run into others (such as ability to run test suites), so just keep this in
mind when using a non-native compiler in the native platform type.

Enhancing Abuild with Plugins

190

29.5. Plugin Examples
In this section, we present examples of using abuild's plugin facility. The examples here illustrate all of the capabilities
of abuild's plugin system, albeit with simplistic cases. Plugins are a very powerful feature that can be used to do things
that you could not otherwise do with abuild. If you are not careful, they can also create situations that violate some of
abuild's design principles, so plugins should be used with particular care. You should also be careful not to overuse
plugins. Many things you may consider implementing as a plugin would be better implemented as an ordinary build
item with rules or hooks. Plugins should be used only for adding capabilities that can't be added without plugins or
that should apply broadly and transparently across many items in the build tree.

Abuild enforces that no plugin may have dependencies or be declared as a dependency of another build item. Still,
it's good practice to name plugins by placing them in a private namespace. This prevents build trees that may have
access to these items (but may not presently declare them as plugins) from declaring them as dependencies. In these
examples, we always place our plugins in the plugin namespace by starting their names with plugin. even though
we have no actual plugin build item. In order to use the plugins in this tree, we have to declare them as plugins in
the root build item's Abuild.conf:

plugin/Abuild.conf

tree-name: plugin
child-dirs: plugins java other outside echo
plugins: plugin.echoer plugin.printer plugin.counter

29.5.1. Plugins with Rules and Interfaces
Here we examine the plugin.counter plugin, which can be found in doc/example/plugin/plugins/counter. This is a
trivial plugin that illustrates use of an interface file and also creates a custom rule that can be referenced in the RULES
variable of a build item's Abuild.mk file. There's nothing special about the plugin's Abuild.conf file:

plugin/plugins/counter/Abuild.conf

name: plugin.counter

The plugin.interface file declares a new interface variable called TO_COUNT which contains a list of file names:

plugin/plugins/counter/plugin.interface

declare TO_COUNT list filename append

This file gets loaded automatically before any regular build items' Abuild.interface files. The file count.mk in the rules/
all directory is the file that a build item may include by placing RULES := count in its Abuild.mk file:

plugin/plugins/counter/rules/all/count.mk

all:: count

Make sure the user has asked for things to count.
ifeq ($(words $(TO_COUNT)), 0)
$(error plugin.counter: TO_COUNT is empty)
endif

Enhancing Abuild with Plugins

191

Use echo `wc` to normalize whitespace
count:
 for i in $(TO_COUNT); do echo `wc -l $$i`; done

If a build item includes count in the value of its RULES variable, then any files listed in TO_COUNT will have their
lines counted with wc -l when the user runs abuild with the count target. The intention here is that items that the target
build item depends on would add files to TO_COUNT in their Abuild.interface files. Then the build item that actually
uses the count rule would display the line counts of all of the files named by its dependencies.

This is admittedly a contrived example, but it illustrates an important point. Here we are adding some functionality that
enables a build item to make use of certain information provided by its dependencies through their Abuild.interface
files. Although we could certainly add the count target using a normal build item that users would depend on, doing
it that way would be somewhat more difficult because each item that wanted to add to TO_COUNT would also have
to depend on something that declares the TO_COUNT interface variable. By using a plugin, we cause the plugin's
plugin.interface to be automatically loaded by all build items in the build tree. That way, any build item can add
to TO_COUNT without having to take any other special actions. This type of facility could be particularly useful
for adding support to abuild for other programming languages that require other information to be known from its
dependencies.

For an example of a build item that uses this plugin's capabilities, see the build items under doc/example/plugin/oth-
er/indep. Here we have the build item indep-a in the a directory that adds a file to TO_COUNT in its Abuild.interface:

plugin/other/indep/a/Abuild.conf

name: indep-a
platform-types: indep

plugin/other/indep/a/Abuild.interface

TO_COUNT = a-file

We also have the build item indep-b (which depends on indep-a) in the b directory that uses the count rule in its
RULES variable in its Abuild.mk file:

plugin/other/indep/b/Abuild.conf

name: indep-b
platform-types: indep
deps: indep-a

plugin/other/indep/b/Abuild.mk

RULES := count

Here is the output of running abuild count from the plugin/other/b directory:

count-b.out

abuild: build starting
abuild: indep-b (abuild-indep): count
make: Entering directory `--topdir--/plugin/other/indep/b/abuild-indep'

Enhancing Abuild with Plugins

192

10 ../../a/a-file
make: Leaving directory `--topdir--/plugin/other/indep/b/abuild-indep'
abuild: build complete

29.5.2. Adding Backend Code
Here we examine the plugin.echoer plugin in the plugins/echoer directory. This plugin supplies automatic build
code for both Groovy-based and make-based build items, something that cannot be done using ordinary build item-
supplied rules. This very simple plugin causes a message to be printed when running the all target. The contents of the
message have a default value but can be influenced by changes to a variable that users can make in their individual
build files. All build items in any build tree that includes this plugin in its list of plugins will get this functionality
automatically without having to take any explicit action. This would be preferable to declaring this as a dependency
for every item and modifying RULES or abuild.rules for every build item.

Here we show the code for both the make and Groovy backends in plugin.mk and plugin.groovy respectively:

plugin/plugins/echoer/plugin.mk

all:: echo ;

echo::
 @$(PRINT) This is a message from the echoer plugin.
 @$(PRINT) The value of ECHO_MESSAGE is $(ECHO_MESSAGE)

plugin/plugins/echoer/plugin.groovy

abuild.addTargetClosure('echo') {
 ant.echo("This is a message from the echoer plugin.")
 ant.echo("The value of echo.message is " + abuild.resolve('echo.message'))
}
abuild.addTargetDependencies('all', 'echo')

Observe that the make version refers to the variable ECHO_MESSAGE and the Groovy version refers to the parameter
echo.message. Where do these come from? The answer is that default values are provided by pre-plugin initializa-
tion files in preplugin.mk and preplugin.groovy. 4 The pre-plugin initialization code is loaded before your build file
(Abuild.mk or Abuild.groovy), while the plugin.mk and plugin.groovy files are loaded after your build file. Here are
the files:

plugin/plugins/echoer/preplugin.mk

ECHO_MESSAGE = default message

plugin/plugins/echoer/preplugin.groovy

parameters {
 echo.message = 'default message'
}

4 We had originally wanted to call these pre-plugin instead of preplugin, but this interferes with the way Groovy generates classes for scripts. Since
pre-plugin is not a valid class name and we want to avoid specific mixed case file names (like prePlugin, we went with preplugin. The make
version is called the same thing for consistency.

Enhancing Abuild with Plugins

193

Although this example is trivial and doesn't do anything useful, it does illustrate how you can use pre-plugin initial-
ization along with regular plugin code to interact with the user's build files. Although adding specific code without
going through the usual rules method should generally be used sparingly, there are other cases in which this type of
facility might be useful. Examples could include targets that gather statistics or run static analysis checks that may be
required by a certain project, or code that enforces policy.

Although building any item in the plugin tree will illustrate use of the plugin.echoer plugin, the echo directory con-
tains four items specifically designed to illustrate manipulation of the echo message. Under the plugin/echo directo-
ry, there are four build items. The item echo-a in the a directory uses the make backend and does not modify the
ECHO_MESSAGE variable:

plugin/echo/a/Abuild.mk

RULES := empty

The item echo-b in the b directory uses the make backend and modifies the ECHO_MESSAGE variabel:

plugin/echo/b/Abuild.mk

ECHO_MESSAGE += with modifications
RULES := empty

The item echo-c in the c directory uses the Groovy backend and does not modify the echo.message parameter:

plugin/echo/c/Abuild.groovy

parameters {
 abuild.rules = 'empty'
}

The item echo-d in the d directory uses the Groovy backend and modifies the echo.message parameter:

plugin/echo/d/Abuild.groovy

parameters {
 echo.message = resolve(echo.message) + ' with modifications'
 abuild.rules = 'empty'
}

To see this in action, run abuild -b desc from the plugin/echo directory:

plugin-echo.out

abuild: build starting
abuild: echo-a (abuild-indep): all
make: Entering directory `--topdir--/plugin/echo/a/abuild-indep'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
make: Leaving directory `--topdir--/plugin/echo/a/abuild-indep'
abuild: echo-b (abuild-indep): all
make: Entering directory `--topdir--/plugin/echo/b/abuild-indep'
This is a message from the echoer plugin.

Enhancing Abuild with Plugins

194

The value of ECHO_MESSAGE is default message with modifications
make: Leaving directory `--topdir--/plugin/echo/b/abuild-indep'
abuild: echo-c (abuild-indep): all
 [echo] This is a message from the echoer plugin.
 [echo] The value of echo.message is default message
abuild: echo-d (abuild-indep): all
 [echo] This is a message from the echoer plugin.
 [echo] The value of echo.message is default message with modifications
abuild: build complete

29.5.3. Platforms and Platform Type Plugins
In the plugin.printer plugin defined in the plugins/printer directory, we create a new platform type and corresponding
platform. This is the mechanism that would be used to add support to abuild for an embedded platform, a cross compiler,
or some other special environment. In this example, we stretch the idea of platform types a bit for the purpose of
illustrating this capability with a simple example.

Here we define a new platform type called printer. This is done by creating a platform-types file and declaring
the platform type in it:

plugin/plugins/printer/platform-types

platform-type printer

In addition to adding the platform type, we also add a platform called zzprinter.any.test-suite.abc. 5 To
add this platform, we print its name from the list_platforms command:

plugin/plugins/printer/list_platforms

#!/usr/bin/env perl

require 5.008;
BEGIN { $^W = 1; }
use strict;

print "platform zzprinter.any.test-suite.abc -type printer\n"

In this case, the program is trivial, but in a real implementation, the list_platforms command would probably be check-
ing the environment or path for presence of certain tools before emitting the name of the platform. A list_platforms
program should only mention the name of a platform that can actually be built on the build host from which it is run.

The fourth field of any object-code platform is always the name of the compiler, so this implies that we have
an abc compiler defined somewhere. This plugin also provides the rules for using the abc compiler in toolchains/
abc.mk. Here are the implementation file and help file:

plugin/plugins/printer/toolchains/abc.mk

.LIBPATTERNS = shlib-% lib-%
OBJ := obj

5 This odd name has been picked to facilitate testing of all examples in abuild's own automated test suite. By starting the platform name with zz,
we effectively ensure that it will always appear alphabetically after whatever the real native platform is on our build system.

Enhancing Abuild with Plugins

195

LOBJ := obj
define libname
lib-$(1)
endef
define binname
print-$(1)
endef
define shlibname
shlib-(1)(if $(2),.$(2)$(if $(3),.$(3)$(if $(4),.$(4))))
endef

ABC := $(abDIR_plugin.printer)/bin/abc
ABCLINK := $(abDIR_plugin.printer)/bin/abc-link

DFLAGS :=
OFLAGS :=
WFLAGS :=

PREPROCESS_c := @:
PREPROCESS_cxx := @:
COMPILE_c := $(ABC)
COMPILE_cxx := $(ABC)
LINK_c := $(ABCLINK)
LINK_cxx := $(ABCLINK)
CCXX_GEN_DEPS := @:

Usage: $(call include_flags,include-dirs)
define include_flags
 $(foreach I,$(1),-I$(I))
endef

Usage: $(call make_obj,compiler,pic,flags,src,obj)
define make_obj
 $(1) $(3) -c $(4) -o $(5)
endef

Usage: $(call make_lib,objects,library-filename)
define make_lib
 cat $(1) > $(call libname,$(2))
endef

Usage: $(call make_bin,linker,compiler-flags,linker-flags,objects,libdirs,libs,binary-filename)
define make_bin
 $(1) $(2) $(3) $(foreach I,$(4),-o $(I)) \
 $(foreach I,$(5),-L $(I)) \
 $(foreach I,$(6),-l $(I)) \
 -b $(call binname,$(7))
endef

Usage: $(call make_shlib,linker,compiler-flags,linker-flags,objects,libdirs,libs,shlib-filename,major,minor,revision)
define make_shlib
 $(1) $(2) $(3) $(foreach I,$(4),-o $(I)) \
 $(foreach I,$(5),-L $(I)) \
 $(foreach I,$(6),-l $(I)) \

Enhancing Abuild with Plugins

196

 -b $(call shlibname,$(7),$(8),$(9),$(10))
endef

plugin/plugins/printer/toolchains/abc-help.txt

The "abc" toolchain is a simple example toolchain support file. It
doesn't do much of anything, but does illustrate many of the
capabilities provided by abuild's ccxx rules.

You can see the help text by running abuild --help rules toolchain:abc, and you can discover that this toolchain is
available by provided abuild --help rules list from anywhere in the plugins tree. To understand this file, you should
read through the comments in rules/object-code/ccxx.mk in the abuild distribution (Appendix I, The ccxx.mk File, page
306). In this case, our plugin also creates the compiler itself in bin/abc and bin/abc-link. Our “compilers” here
just create text files of the source code with numbered lines. Doing this particular operation with a plugin is a bit
absurd—using some external utility would be a better implementation. Still, it illustrates the mechanics of setting up
an additional platform type, and it is not at all uncommon for a native compiler plugin to provide wrappers around
the real compiler.

Note that to invoke our compiler, the abc.mk file uses $(abDIR_plugin.printer) to refer to a file in its own directory,
just as would be necessary in rules provided by a regular build item. Abuild provides these variables to the make
backend and also makes this information available to the Groovy backend. 6

To see this plugin in action, build the build item in other/bin with --with-deps. You will see not only the normal
native executable program being built, but you will also see a second output directory called abuild-zzprinter.any.test-
suite.abc which contains a file called print-program. This happens because both the bin build item and the lib build
item on which it depends include the printer platform type in their platform-types keys in their Abuild.conf files:

plugin/other/lib/Abuild.conf

name: lib
platform-types: native printer

plugin/other/bin/Abuild.conf

name: bin
platform-types: native printer
deps: lib

Here is the build output:

plugin-other-bin.out

abuild: build starting
abuild: lib (abuild-<native>): all
make: Entering directory `--topdir--/plugin/other/lib/abuild-<native>'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
Compiling ../lib.cc as C++
Creating lib library
make: Leaving directory `--topdir--/plugin/other/lib/abuild-<native>'

6 For the deprecated xml-based ant backend, corresponding ant properties abuild.dir.build-item are available.

Enhancing Abuild with Plugins

197

abuild: bin (abuild-<native>): all
make: Entering directory `--topdir--/plugin/other/bin/abuild-<native>'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
Compiling ../main.cc as C++
Creating program executable
make: Leaving directory `--topdir--/plugin/other/bin/abuild-<native>'
abuild: lib (abuild-zzprinter.any.test-suite.abc): all
make: Entering directory `--topdir--/plugin/other/lib/abuild-zzprinter.a\
\ny.test-suite.abc'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
Compiling ../lib.cc as C++
Creating lib library
make: Leaving directory `--topdir--/plugin/other/lib/abuild-zzprinter.an\
\y.test-suite.abc'
abuild: bin (abuild-zzprinter.any.test-suite.abc): all
make: Entering directory `--topdir--/plugin/other/bin/abuild-zzprinter.a\
\ny.test-suite.abc'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
Compiling ../main.cc as C++
Creating program executable
make: Leaving directory `--topdir--/plugin/other/bin/abuild-zzprinter.an\
\y.test-suite.abc'
abuild: build complete

Here is the print-program file. This file contains the concatenation of all the source files used to create the executable
as well as the “libraries” it “links” against:

printer-program.out

------ ==> ../../lib/abuild-zzprinter.any.test-suite.abc/lib-lib <== ------

------ ../lib.cc ------

1: #include "lib.hh"
2:
3: #include <iostream>
4:
5: void f()
6: {
7: std::cout << "I am a function named f." << std::endl;
8: }

------ main.obj ------

------ ../main.cc ------

1: #include <iostream>

Enhancing Abuild with Plugins

198

2: #include "lib.hh"
3:
4: int main()
5: {
6: f();
7: std::cout << "I, this program, am aware of myself." << std::endl;
8: std::cout << "Does that mean I'm alive?" << std::endl;
9: return 0;
10: }

29.5.4. Plugins and Tree Dependencies
In the example/plugin/outside build tree, we have a tree that includes our plugin tree as an tree dependency. This tree
contains the prog2 build item which depends on the same lib as our previous example's bin build item. This build tree
does not declare any plugins, so even though its tree dependency declares plugins, those plugins are not used within
this tree. When we build the prog2 build item with dependencies, although the lib build item still builds as before,
prog2 completely disregards the existence of the other platform type and the echoer's additional build steps. This is
very important. Sometimes, a build tree may declare a plugin that works for every item in its own tree but that would
not necessarily work for items in other trees. Examples might include strict static analyzers or other code checkers.
It may be desirable to allow the products of this build tree to be usable by others that do not wish to follow the same
restrictions. Here is the output of building prog2 with dependencies:

plugin-outside.out

abuild: build starting
abuild: lib (abuild-<native>): all
make: Entering directory `--topdir--/plugin/other/lib/abuild-<native>'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
make: Leaving directory `--topdir--/plugin/other/lib/abuild-<native>'
abuild: lib (abuild-zzprinter.any.test-suite.abc): all
make: Entering directory `--topdir--/plugin/other/lib/abuild-zzprinter.a\
\ny.test-suite.abc'
This is a message from the echoer plugin.
The value of ECHO_MESSAGE is default message
make: Leaving directory `--topdir--/plugin/other/lib/abuild-zzprinter.an\
\y.test-suite.abc'
abuild: prog2 (abuild-<native>): all
make: Entering directory `--topdir--/plugin/outside/prog2/abuild-<native>'
Compiling ../main.cc as C++
Creating prog2 executable
make: Leaving directory `--topdir--/plugin/outside/prog2/abuild-<native>'
abuild: build complete

29.5.5. Native Compiler Plugins
In the example/native-compiler directory, we have a plugin that defines a native compiler. The plugin is in the compiler
directory and is called plugin.compiler. In this plugin, we are adding a new platform to support our alternative compiler.
We don't have to add any new platform types since we are just adding this platform to the native platform type. Since
this is a relatively common operation, abuild provides a short syntax for doing it. Here is the list_platforms program:

native-compiler/compiler/list_platforms

Enhancing Abuild with Plugins

199

#!/usr/bin/env perl
BEGIN { $^W = 1; }
use strict;

my $lowpri = '';
if ((exists $ENV{'QCC_LOWPRI'}) && ($ENV{'QCC_LOWPRI'} eq '1'))
{
 $lowpri = ' -lowpri';
}
if (! ((exists $ENV{'NO_QCC'}) && ($ENV{'NO_QCC'} eq '1')))
{
 print "native-compiler$lowpri qcc.release\n";
 print "native-compiler$lowpri qcc.debug\n";
 print "native-compiler$lowpri qcc\n";
}

It generates this output which automatically creates platforms with the same first three fields (os, cpu, and toolset)
as other native platforms, with the qcc compiler as the fourth field, and with release, debug, or nothing as the
fifth field:

native-compiler qcc.release
native-compiler qcc.debug
native-compiler qcc

Since new platforms take precedence over old platforms by default when abuild chooses which platform to use for a
given platform type, our list_platforms script offers the user a way of suppressing this platform and also of making
these low priority compilers. In this case, our list_platforms program doesn't generate any output if the NO_QCC
environment variable is set, and if the QCC_LOWPRI environment variable is set, it declares these as low priority
compilers which makes them available but prevents them from being selected by default over built-in compilers or
compilers declared by earlier plugins. Setting that environment variable would make that platform completely unavail-
able, regardless of any compiler preferences expressed by the user. (We could also prevent the platform using this
compiler from being built by default without making it disappear entirely by using platform selectors as discussed in
Section 24.1, “Platform Selection”, page 155). Note that we generate output for the qcc compiler with the release
and debug flags as per our usual convention. By placing the compiler with no options last, we make abuild select it by
default over the other two. It will also be selected over any built-in platforms or platforms provided by earlier plugins.

In addition to listing the compiler in list_platforms, we have to provide a support file for it in toolchains/qcc.mk:

native-compiler/compiler/toolchains/qcc.mk

.LIBPATTERNS = lib-%
OBJ = o
LOBJ = o
define libname
lib-$(1)
endef
define binname
bin-$(1)
endef
define shlibname
shlib-(1)(if $(2),.$(2)$(if $(3),.$(3)$(if $(4),.$(4))))
endef

Enhancing Abuild with Plugins

200

QCC = echo

DFLAGS =
OFLAGS =
WFLAGS =

Convention: clear OFLAGS with debug option and DFLAGS with release option.
ifeq ($(ABUILD_PLATFORM_OPTION), debug)
OFLAGS =
endif
ifeq ($(ABUILD_PLATFORM_OPTION), release)
DFLAGS =
endif

PREPROCESS_c = @:
PREPROCESS_cxx = @:
COMPILE_c = $(QCC)
COMPILE_cxx = $(QCC)
LINK_c = $(QCC)
LINK_cxx = $(QCC)
CCXX_GEN_DEPS = @:

Usage: $(call include_flags,include-dirs)
define include_flags
 $(foreach I,$(1),-I$(I))
endef

Usage: $(call make_obj,compiler,pic,flags,src,obj)
define make_obj
 $(1) make-obj $(5)
 touch $(5)
endef

Usage: $(call make_lib,objects,library-filename)
define make_lib
 $(QCC) make-lib $(call libname,$(2))
 touch $(call libname,$(2))
endef

Usage: $(call make_bin,linker,compiler-flags,linker-flags,objects,libdirs,libs,binary-filename)
define make_bin
 $(1) make-bin $(call binname,$(7))
 touch $(call binname,$(7))
endef

Usage: $(call make_shlib,linker,compiler-flags,linker-flags,objects,libdirs,libs,shlib-filename,major,minor,revision)
define make_shlib
 $(1) make-bin $(call shlibname,$(7),$(8),$(9),$(10))
 touch $(call shlibname,$(7),$(8),$(9),$(10))
endef

This file illustrates a degenerate compiler implementation, providing minimal implementations of all the variables
and functions that ccxx.mk requires. For details, please read the comments in rules/object-code/ccxx.mk in the abuild
distribution (Appendix I, The ccxx.mk File, page 306).

Enhancing Abuild with Plugins

201

In the native-compiler/outside directory, there is another build tree that lists the plugin tree, in this case native-compiler,
as a tree dependency:

native-compiler/outside/Abuild.conf

tree-name: outside
tree-deps: native-compiler
name: outside
platform-types: native
deps: lib

This tree doesn't know about the qcc compiler, so when we build the outside build item, it would build only with the
default native compiler. In a default invocation of abuild (i.e., one without any platform selectors), the lib build item
on which this depends would only be built with qcc because of the plugin in its build tree (which is a tree dependency
of this tree). However, the lib build item could also be built with the default native compiler. Abuild recognizes this
fact and will therefore compile lib with both qcc and the default native compiler. This is an example of abuild's ability
to add additional build platforms as needed based on the dependency graph:

as-needed-platforms.out

abuild: build starting
abuild: lib (abuild-<native>): all
make: Entering directory `--topdir--/native-compiler/lib/abuild-<native>'
Compiling ../lib.cc as C++
Creating lib library
make: Leaving directory `--topdir--/native-compiler/lib/abuild-<native>'
abuild: lib (abuild-<native-os-data>.qcc): all
make: Entering directory `--topdir--/native-compiler/lib/abuild-<native-\
\os-data>.qcc'
Compiling ../lib.cc as C++
make-obj lib.o
Creating lib library
make-lib lib-lib
make: Leaving directory `--topdir--/native-compiler/lib/abuild-<native-o\
\s-data>.qcc'
abuild: outside (abuild-<native>): all
make: Entering directory `--topdir--/native-compiler/outside/abuild-<nat\
\ive>'
Compiling ../outside.cc as C++
Creating outside executable
make: Leaving directory `--topdir--/native-compiler/outside/abuild-<native>'
abuild: build complete

29.5.6. Checking Project-Specific Rules

Another use of a plugin could be to enforce additional build tree-specific rules that fall outside of abuild's normal
dependency checking capabilities. As an example, suppose you had a build item that you wanted all build items to
depend on and that you couldn't make it a plugin because it had to build something. You could have that build item
set a variable to some specific value in its Abuild.interface file. Then you could create a plugin that would check that
the variable had that value, which would effectively make sure everyone depended on the item that set the variable.
This plugin would have a plugin.mk file that would check to make sure that the variable was set and report an error

Enhancing Abuild with Plugins

202

if not. Since all build items would see the plugin code, it would make this plugin an effective checker for enforcing
some rule that can't otherwise by expressed.

We illustrate this pattern in our rule-checker example which can be found in doc/example/rule-checker. This direc-
tory includes four build items: plugin.auto-checker, auto-provider, item1, and item2. The goal is that every
build item whose target type is object-code should depend on auto-provider. This rule is enforced with the
plugin.auto-checker plugin which is declared as a plugin in the tree's root Abuild.conf:

rule-checker/Abuild.conf

tree-name: rule-checker
child-dirs: auto-checker auto-provider item1 item2
plugins: plugin.auto-checker

The plugin.auto-checker build item contains two files aside from its Abuild.conf. It has a plugin.interface file that
declares a variable that indicates whether the auto-provider build item has been seen:

rule-checker/auto-checker/plugin.interface

declare SAW_AUTO_PROVIDER boolean
fallback SAW_AUTO_PROVIDER = 0

This plugin interface file is automatically loaded by all build items before their own interface files or any of the interface
files of their dependencies. We include a fallback assignment of a false value to this variable. The auto-provider
build item sets this variable to true in its Abuild.interface file:

rule-checker/auto-provider/Abuild.interface

The plugin.auto-checker plugin must be enabled on any build tree
whose item depend on this since its plugin.interface file provides a
declaration for the SAW_AUTO_PROVIDER variable. Additionally, the
plugin.auto-checker plugin makes sure everyone depends on this
item. This item cannot itself be a plugin because it has an
Abuild.mk file.

SAW_AUTO_PROVIDER = 1

Make the automatically generated file visible
INCLUDES = $(ABUILD_OUTPUT_DIR)

For completeness, here are the rest of the files from auto-provider:

rule-checker/auto-provider/Abuild.mk

LOCAL_RULES := provide-auto.mk

rule-checker/auto-provider/provide-auto.mk

all:: auto.h

Enhancing Abuild with Plugins

203

auto.h:
 @$(PRINT) Generating $@
 echo '#define AUTO_VALUE 818' > $@

Since auto-provider sets the SAW_AUTO_PROVIDER variable, it possible for the plugin.auto-checker build
item to detect that auto-provider is in the dependency list by checking the value of that variable. It does this in its
plugin.mk file, which is included by abuild's make code for every make-based build item:

rule-checker/auto-checker/plugin.mk

ifeq ($(ABUILD_TARGET_TYPE), object-code)
 ifeq ($(SAW_AUTO_PROVIDER), 0)
 $(error This item is supposed to depend on auto-provider, but it does not)
 endif
endif

To see what happens when a build item forgets to depend on auto-provider, we will look at item1. Here is its
Abuild.conf:

rule-checker/item1/Abuild.conf

name: item1
platform-types: native

As you can see, there is no dependency on auto-provider. When we try to build this item, we get the following error:

rule-checker-item1-error.out

abuild: build starting
abuild: item1 (abuild-<native>): all
make: Entering directory `--topdir--/rule-checker/item1/abuild-<native>'
../../auto-checker/plugin.mk:3: *** This item is supposed to depend on a\
\uto-provider, but it does not. Stop.
make: Leaving directory `--topdir--/rule-checker/item1/abuild-<native>'
abuild: item1 (abuild-<native>): build failed
abuild: build complete
abuild: ERROR: at least one build failure occurred; summary follows
abuild: ERROR: build failure: item1 on platform <native>

This is the error that was issued from plugin.auto-checker's plugin.mk above. The build item item2 does declare
the appropriate dependency:

rule-checker/item2/Abuild.conf

name: item2
platform-types: native
deps: auto-provider

Its build proceeds normally:

rule-checker-item2-build.out

Enhancing Abuild with Plugins

204

abuild: build starting
abuild: auto-provider (abuild-indep): all
make: Entering directory `--topdir--/rule-checker/auto-provider/abuild-i\
\ndep'
Generating auto.h
make: Leaving directory `--topdir--/rule-checker/auto-provider/abuild-indep'
abuild: item2 (abuild-<native>): all
make: Entering directory `--topdir--/rule-checker/item2/abuild-<native>'
Compiling ../item2.c as C
Creating item2 executable
make: Leaving directory `--topdir--/rule-checker/item2/abuild-<native>'
abuild: build complete

This examples shows how little code is required to implement your own rule checking. The possibilities for use of this
technique are endless. Such techniques could be used to enforce all sorts of project-specific architectural constraints,
build item naming conventions, or any number of other possibilities. You could even create a single project-wide
global plugin that checked to make sure other plugins defined in other trees were appropriate declared, thus effectively
working around the limitation of only being able to declare a single global tree dependency in a forest.

29.5.7. Install Target
Still another use of plugins could be to implement an install target. Although abuild provides most of what is required
to use build products within the source tree, in most real systems, there comes a time when a distribution has to be
created. You can write your own install target or similar using plugins.

205

Chapter 30. Best Practices
This chapter describes some “best practices” that should be kept in mind while using abuild. It is based on experience
using abuild and lessons learned from that experience.

30.1. Guidelines for Extension Authors
If you are writing code to extent abuild through plugins or build item rules, there are several things you should keep
in mind. This section describes items that pertain to both make and Groovy/ant extensions.

• If your rules or plugin adds support for an optional tool, you must consider carefully what you will do if that tool is
not available. One option would be to fail. Another option would be to simply not provide the added functionality.
For example, if you are providing a plugin that adds support for a new compiler, your plugin should detect whether
the compiler is available, and if it is not, it should avoid listing it as an available compiler or platform. This makes
it possible for people to continue to build with other compilers on systems that lack your additional one. If you are
adding support for an optional code generator, abuild's code generator caching program may be of use to you; see
Section 22.6, “Caching Generated Files”, page 145.

• Since you can't define your own custom clean target, you should generally avoid having rules create files outside
of the output directory from which they are run. Any such products will not be removed by abuild clean as run by
ordinary users. If you have situations in which you must create files in external locations, such as installer plugins,
you may want to provide a specific target to remove them as well.

30.2. Guidelines for Make Rule Authors
The code that goes into a make rule implementation file, preplugin.mk, or plugin.mk file is regular GNU Make code.
There are certain practices that you should follow when writing GNU Make code for use within abuild. A good way
to learn about writing rules for abuild is to study existing rules. Here we will briefly list some things that rules authors
must keep in mind:

• If you are about to write some rules, consider carefully whether they should be local rules for a specific build item
(accessed with the LOCAL_RULES variable), exported rules provided by a build item (accessed with the RULES
variable), or whether they should be made globally accessible by being included in a plugin. The last case will be
rare and should only be used for functionality that really should work “out of the box” in a particular build tree.
Plugin rules and build item rules must appear in the rules/target-type directory or the rules/all directory within
the providing build item. Local rules can appear anywhere, and the location must be named in the LOCAL_RULES
variable in Abuild.mk. It is also possible to create global make code that is loaded from a plugin directory: abuild
will load any preplugin.mk and plugin.mk files defined in plugins in the order in which the plugins are declared.
Remember that preplugin.mk is loaded before Abuild.mk, and plugin.mk is loaded after Abuild.mk. This makes it
possible for a plugin to provide some initial variable settings for the user in preplugin.mk, have the user do something
with or modify those values in Abuild.mk, and then use the result that operation in plugin.mk.

• Abuild invokes make with the --warn-undefined-variables flag. This means that your users will see warnings if
you assume that an undefined variable has the empty string as a value. If it is your intention to have an undefined
variable default to the empty string, then you should include

VARIABLE ?=

in your rules, where VARIABLE is the name of the variable you are setting. You can always provide default values
for variables in this fashion if the intention is to allow users to override those values in their own Abuild.mk files.

• Note that Abuild.mk files are included before rules files. This is necessary because the Abuild.mk file contains
information about which rules are to be included. If your rules are providing values that users will use in their

Best Practices

206

Abuild.mk files, you should recognize that your users will need to avoid referencing those variables in assignment
statements that use := instead of = since the Rules.mk variables will not yet be defined when Abuild.mk is read.
Alternatively, you can make use of the preplugin.mk functionality for rules supplied by plugins.

• You should always provide a help file for your rules. The help file is called rulename-help.txt, and lives in the
same directory as the rule implementation. For an example and discussion of this, see Chapter 22, Build Item Rules
and Automatically Generated Code , page 129 and Chapter 8, Help System, page 37.

• If your rules require certain variables to be set, check for those variables and given an error if they are not defined.
For an example of this, see Section 22.2, “Code Generator Example for Make”, page 130. The ccxx.mk rules in the
abuild sources (Appendix I, The ccxx.mk File, page 306) provide a somewhat more elaborate example of doing
this since they actually generate dynamically in terms of other values the list of variables that should be defined.

• All rules should provide an all:: target. Note that abuild never invokes a user-supplied clean target, so providing
a clean target is not useful. 1 Although you can add additional targets in your rules files, think carefully before
doing so. Having too many custom targets will make a source tree hard to build and maintain. If you are adding
functionality that should be done as part of every build, consider making it part of the all:: target.

• If you are adding support for a new test driver, you should make sure that your test driver is invoked from the
check, test, and test-only targets. You must also ensure that both the check and test targets depend on the all target
but that the test-only target does not depend on the all target. Abuild internally provides this construct for these
targets that don't do anything, so if your test support only operates conditionally upon the presence of test files,
you don't have to worry about conditionally defining empty targets. For an example, see make/qtest-support.mk in
the abuild distribution.

• Sometimes it may be useful to provide debugging targets for your users that provide some information about the
state as your rules see it. The ccxx rules provide a ccxx_debug target for this purpose.

• Always remember that any targets you define in your rules files are run from the output subdirectory. The variable
$(SRCDIR) points to the directory that contains the actual Abuild.mk file and therefore presumably the source files.
Abuild sets the VPATH variable to this as well, but you may have to explicitly run your actions with arguments that
point back to the source directory (e.g., -I $(SRCDIR)). If make finds a target's prerequisite using VPATH, the full
relative path to the prerequisite will be accurately reflected in $< and $^, which will be sufficient for many cases.

• In order to have your rules behave properly with the --verbose and --silent flags, you should avoid putting @ in
front of commands that the user should see in verbose mode, and you should have all your rules print short, simple
descriptive messages about what they are doing. These rules should be printed using @$(PRINT). The PRINT
variable is usually set to echo, but it is set to @: when abuild is running in silent mode. Note that we put an @ sign
at the beginning of the @$(PRINT) command so that the user will not see the echo command itself (in addition to
what is being echoed) being echoed when they are running in verbose mode.

• There are some convenience functions provided by abuild's GNU Make code. The best way to learn is to read
existing rules. If you are going to be writing a lot of make code for abuild, it will be in your interest to familiarize
yourself with the code in make/global.mk in the abuild distribution.

30.3. Guidelines for Groovy Target Authors
All Groovy files loaded by abuild are Groovy scripts. This gives you plenty of rope with which you can hang yourself.
When creating rules or other Groovy code for use with abuild keep in mind following guidelines:

• If your code does anything more elaborate than adding stand-alone closures, consider having your script explicitly
define a class and then instantiate it. This provides a “fence” to protect us against certain types of errors, such as

1 In abuild 1.0, user-supplied clean targets were run when abuild was invoked from inside an output directory, but this turned out not to be particularly
useful or reliable. The practice of having clean targets simply remove output directories seems to have emerged as a best practice in the community
anyway.

Best Practices

207

mistyping a field name and ending up adding something to the binding instead. All built-in Groovy rules provided
by abuild follow this convention.

• When writing custom rules or defining additional targets, allow all defaults to be overridable through parameter
settings. This helps to avoid locking the user into a set of conventions. Abuild's Groovy backend's runActions method
provides an easy framework that enables your rules to offer the same layers of customization that are provided
by abuild's own rules. For an example of using this construct, see Section 22.3, “Code Generator Example for
Groovy”, page 132.

• When developing support for a new test framework, you only have to add new closures for the test-only target.
Abuild automatically calls the test-only from both test and check. This is actually different in the make backend,
which requires adding code to all three test-related targets. The reason we don't have to do this in Groovy is that our
target framework allows to explicitly call one target from another in a dependency-aware fashion.

Instead of adding closures to test-only, you may instead decide to create your own custom target, make it a depen-
dency of test-only, and add your closures to your custom target. This is what both QTest and JUnit support do. The
advantage of this approach is that it makes it possible for you invoke a particular collection of tests explicitly and,
for build items that use more than one test framework, prevents later tests from being skipped if earlier ones fail.

The best way to learn about what is offered by abuild's Groovy backend is to study existing rules from the rules
directory in your abuild distribution. You can find a complete copy of the java rules in Appendix J, The java.groovy
and groovy.groovy Files, page 316. If you're really adventurous, you can read the source to the Groovy backend
itself in abuild's source distribution.

30.4. Platform-Dependent Files in Non-ob-
ject-code Build Items
It's easy to fall into the trap of thinking that, just because a file is a text file or some other format that can be processed
on any platform type, it is a platform-independent file. A plain text file that contains platform-specific information is, in
fact, a platform-specific file. So if you have a build item that runs a platform-specific tool and caches platform-specific
information, that build item should probably have platform type native rather than indep.

This is one reasons that abuild doesn't provide information about the current platform to the abuild interfaces for java
and platform-independent build items. It would be a bug to have an interface variable have a different value
in different contexts when it might influence a build that could be used on multiple platforms. For example, an indep
build item could write out some value based on a platform variable and then that information could be wrong when
the results of the build were used on a different platform.

Abuild itself actually breaks this rule for Java wrapper scripts. This is a known problem for which we don't have a
ready solution. It just show that there may be instances in which you might break this rule, but be aware when you
do that you are creating a situation in which a single built instance of build tree may not work properly when used
across multiple platforms.

30.5. Hidden Dependencies
Suppose you have build items A, B, and C, and suppose that B doesn't actually require C to build, but anyone who
needs B also needs C. In this case, B should declare a dependency on C, or B and C should be combined. In other
words, a build item should depend on all build items that will be needed if you use it.

Consider a concrete example. Suppose our three build items are main, lib-headers, and lib-src. Suppose lib-head-
ers doesn't have an Abuild.mk and doesn't actually build anything. Instead, it just has an Abuild.interface that adds its

Best Practices

208

directory to your INCLUDES variable. Suppose lib-src builds a library and has an Abuild.interface that adds the li-
brary directory to LIBDIRS and the library to LIBS. If main uses the library built by lib-src but declares a dependency
on lib-headers, then it will be able to compile but not link. In order to link, it requires a dependency on lib-src.
This means that anyone that depends on lib-headers must also depend on lib-src. Rather than having this situation,
make lib-src's Abuild.interface append to INCLUDES and just eliminate the lib-headers build item entirely. It is
still okay to have the headers in a separate directory; just don't place an Abuild.conf in that directory.

30.6. Interfaces and Implementations
Separation of implementations from interfaces can be a good idea and can reduce the complexity of the dependency
graph of a build tree since users of a capability need to depend only on the interfaces and not the implementations.
If done incorrectly, however, separating implementations from interfaces has several pitfalls. One may be tempted to
implement separation of interfaces from implementations by using a scheme such as the one described in the previous
section, Section 30.5, “Hidden Dependencies”, page 207. In addition to creating a potential hidden dependency
issue, it is possible to create even worse situations, such as hidden circular dependencies.

The case in the previous situation showed how we can create a link error that could be resolved by adding an extra
dependency in main. It is relatively easy to create situations that will cause unresolvable link errors as well by creating
separate header-only build items. For example, suppose you have libraries A and B and separate build items A-head-
ers and B-headers to export their static header files. Suppose now that A depends on A-headers and B-headers
and that B also depends on A-headers and B-headers. (See Figure 30.1, “Hidden Circular Dependency”, page
209) In this case, A and B are actually interdependent but there are no circular dependencies declared. If there are
any situations between A and B in which the first reference to something in B appears in A and the first reference to
something else in A appears in B, then anything that depends on A and B will have a link error. 2 This is a hidden
circular dependency. The best way to avoid this situation is to not split A-headers from A.

2 Use of shared libraries or repeating libraries in the link statement could actually work around this specific case, but there are good reasons to
avoid circular dependencies beyond just making abuild happy. The point is that this technique allows them to hide in the dependency graph, which
is a bad thing.

Best Practices

209

Figure 30.1. Hidden Circular Dependency

A and B are interdependent even though no explicit circular dependencies exist.

There are other less insidious problems that are still annoying. For example, A-headers might really depend on B-
headers but forget to declare this. As long as A-src declares a dependency on B-headers, we'll never notice that
A-headers forgot to declare its dependency because A-headers isn't actually built. We might later try to build
something else that declares a dependency on A-headers. This other build may fail because of B-headers not being
known. We've then created a hidden dependency situation: anyone who depends on A-headers must also depend on
B-headers. The best way to this situation is also to not split A-headers from A.

One cost of not separating these is that if one library depends only on another library's header files, the two libraries
could be built in parallel. By making one library depend on the other in its entirety, abuild will force the other library
to be built before the dependent library. This is unfortunate, but it's not a good idea to work around this by introducing
holes in abuild's dependency management. A better technique would be to use some external analyzer that could detect
at a finer level what things can actually be built in parallel. There are commercial tools that are designed to do this.
Perhaps, over time, abuild will acquire this capability, or users of abuild can implement some solution on top of abuild
that uses an external tool.

Proper separation of interfaces from implementations, such as using a bridge pattern (as described in the Design Pat-
terns book by Gamma, et al), which allows the implementation and interface to vary separately by implementing proxy
methods that call real methods through a runtime-supplied implementation pointer, can solve the parallel build prob-
lem without introducing any of these other pitfalls. Ultimately, as long as you don't create a situation where depending
on one thing automatically requires you to depend on some other specific thing to avoid link errors, you should be in

Best Practices

210

pretty good shape. You can also see an example of true separation of interfaces from implementations in Section 25.2,
“Mixed Classification Example”, page 168.

Note that another way to create this hidden dependency problem is to create a directory that contains header files
for multiple build items. Suppose, for example, that you have the directory structure shown in Figure 30.2, “Shared
Include Directory”, page 210:

Figure 30.2. Shared Include Directory

Oops! Both build items use the same include directory!

and that A and B both have their header files in the include directory. If both A and B add ../include to INCLUDES in
their Abuild.interface files, any build item that depends on A could accidentally include B's header files and therefore
accidentally require B as well. A simple way to avoid this without having to distribute the public header files throughout
module's directory structure would be to create separate directories under include, such as shown in Figure 30.3,
“Separate Include Directories”, page 211.

Best Practices

211

Figure 30.3. Separate Include Directories

Headers are still easy to find and are separated by build item.

212

Chapter 31. Monitored Mode
When run with the --monitored flag, abuild runs in monitored mode. In this mode, abuild generates output that would
be useful to an external program that may be monitoring its progress. This includes the output of --dump-data (see
Appendix F, --dump-data Format, page 296). With the data output in monitored mode, it is possible to present
information to the user that reveals considerable detail about abuild's progress during the course of a build. Monitored
mode was introduced into abuild to support development of graphical front ends or IDE plugins for abuild, but it could
be useful for other purposes as well.

All additional information in monitored mode is either prefixed by the string abuild-monitored: followed by a keyword
or is delimited on both ends by strings so prefixed. The following information is provided in monitored mode:

begin-dump-data ... end-dump-data
Lines delimited by these keywords surround --dump-data output. In monitored mode, --dump-data output ap-
pears just before build graph output or, if there were errors, just before it exits. Note that --dump-data output is
always included in monitored mode, so inclusion of the --dump-data option is not required and would in fact
make abuild exit before it built anything.

begin-dump-build-graph ... end-dump-build-graph
Lines delimited by these keywords surround --dump-build-graph output. In monitored mode, --dump-build-
graph output appears just before abuild begins a build. It is not included if there were errors. Note that --dump-
build-graph output is always included in monitored mode, so inclusion of the --dump-build-graph option is not
required and would in fact make abuild exit before it built anything.

error
Any error message output by abuild is repeated in a monitor output message prefixed by this keyword.

fatal-error
Any fatal error message output by abuild is first issued in a monitor output message prefixed by this keyword.

state-change
During a build, abuild outputs state changes from the dependency evaluator using this keyword. State change
monitor output lines will always have this form:

abuild-monitor: state-change item-name platform state

where state is one of the following:

waiting
The item is scheduled to be built but still has dependencies that have not yet been built

ready
The item is scheduled to be built, and all its dependencies have been successfully built

running
The item is currently being built

completed
The item has been built successfully

failed
An attempt was made to build the item, but the build failed

dependency-failed
The item was previously scheduled to be built, but a build will no longer be attempted because of the failure
of one of its dependencies

Monitored Mode

213

targets
Before abuild invokes the backend to perform a build, it will output a line of the form

abuild-monitor: targets item-name platform target [target ...]

to indicate a space-separated list of targets that will be passed to the backend.

Additional monitor output lines may be added in the future. To ensure forward compatibility, programs intending to
consume abuild monitor output should ignore any abuild monitor output lines that they do not recognize.

214

Chapter 32. Sample XSL-T Scripts
Abuild has various options that output or otherwise generate XML data. Among these are --dump-data, --dump-
build-graph, and --dump-interfaces. XML data can be hard to read and cumbersome for people to operate on directly,
but it is a very convenient input format for additional processing. See the misc/xslt directory in the abuild source or
binary distribution for some example XSL-T scripts. There is a README.txt file in that directory which contains
additional information.

215

Chapter 33. Abuild Internals
This chapter provides detailed information about the inner workings of parts of abuild. Understanding this material is
not essential even for using abuild in an advanced way, but reading it may provide insight into some of the reasons
that abuild works the way it does. Understanding this material is essential to anyone who would want to modify any
of abuild's core functionality.

33.1. Avoiding Recursive Make
There has been some thought and writing about recursive make, and there are various approaches to the problem
of make recursion. On one extreme, you can write makefiles that iterate through subdirectories and invoke make
recursively for each subdirectory. These are hostile to parallelism and invoke make recursively bounded by the depth
of the file system. This use of recursive make is expensive in terms of time and system resources. At the other end
of the spectrum, you can create makefiles that include all the other makefiles and effectively create one monolithic
makefile for the entire project. These makefiles are fragile and very hard to maintain because you have to make sure
that no makefile defines any targets or variables that conflict with those defined by other makefiles, and you have to
jump through hoops to make sure that whatever paths are in the makefiles can be resolved properly regardless of the
starting directory of the build.

Abuild takes a middle ground. The only files that may be included in multiple contexts that actually set variables and
contain end-user knowledge are rules files. To make this work, we provide variables that contain the currently resolved
path of each build item. This is necessary anyway in order to support backing areas. Abuild then allows users to create
Abuild.mk files that don't have to coexist with other Abuild.mk files at runtime. Since abuild knows all the dependencies
between build items, it can build items iteratively or even in parallel without using any recursion at all. Although a
monolithic makefile system that is perfectly constructed would allow arbitrarily complex dependencies to be declared
between specific targets in specific directories, maintaining this for a system of any size or for a system that was
dynamic would be impractical. Abuild replaces this with precise management of inter-build item dependencies. Even
so, abuild's make code actually does generate fine-grained dependencies at the file level, so most of the advantages
of the monolithic non-recursive makefile approach are realized with abuild. We believe that this achieves the right
balance between granularity and ease of maintenance and makes abuild's approach robust and efficient for both small
and large build trees.

33.2. Starting Abuild in an Output Directory
When abuild starts up, it decides that it is running in an output directory if all of the following conditions hold:

• The current directory does not contain an Abuild.conf file

• The parent directory does contain an Abuild.conf file

• The current directory name starts with abuild-

• The current directory contains a file called .abuild

If abuild is invoked in an output directory, it determines the current platform from the name of the output directory
(which is always called abuild-platform) and the current build item from the Abuild.conf in the parent directory.
Then it will run a build only for that specific platform on that specific build item. In this mode, abuild explicitly
prohibits specification of a build set or clean set and does not build dependencies, as if --no-deps were specified. In
this mode, the clean target recursively removes all files only in the current output directory (except that it leaves the
empty .abuild file behind). The main use for this feature would be in testing rules, but it could also be useful in helping
to track down some hard-to-trace build problem that applies to only one of several platforms that are being built for
a specific build item. Most users will never use this functionality.

Abuild Internals

216

33.3. Traversal Details
This section describes how abuild traverses build trees to resolve build item names to paths. Here we describe the
process at a level of detail that is closer to the code. The traverse function in the abuild source code is responsible for
the behavior described here. It will likely be necessary to read this section more than once to fully understand what is
happening as some parts of the description won't make sense without knowing about parts you won't have read yet.
(Fortunately, the human brain is better at resolving circular dependencies than a build system is.)

Internally, abuild maintains tree data structures to hold onto the shape and contents of build forests: BuildForest,
BuildTree and BuildItem. The BuildForest object has a map from build tree names to BuildTree objects and
also from build item names to BuildItem objects. The BuildForest object also contains the list of backing areas that
apply to the forest as well as the list of items and trees that are specified as deleted in the Abuild.backing file.

The BuildTree object contains tree-specific information, such as the tree's list of plugins, tree dependencies, supported
traits, etc. It also contains the absolute path of the root build item of the tree. The BuildItem object contains the
absolute path of the build item, the name of the containing build tree, its dependencies, and various other information
from the Abuild.conf file. Additionally, both objects store the tree's or item's backing depth, which is a count of the
number of backing areas that had to be followed to resolve the item or tree. Although the backing depth is an integer
value, nothing in abuild cares about the depth other than whether it is zero or not. A backing depth of zero indicates
that the tree or item appears locally in the current forest.

When abuild starts up, it first locates the root of the local forest. It does this by starting with the current directory and
walking up the file system (toward the root) until it encounters an Abuild.conf that is not referenced as a child of the
next higher Abuild.conf, if any. When it finds such an Abuild.conf, it verifies that it is either a tree root build item or
that is has only a child-dirs key. In either case, it is the root of the forest. Otherwise, it is an error, and abuild indicates
that it is not able to find the forest root.

Once abuild has found the root of the local build tree, it begins traversal. The actual traversal logic is more complicated
than what is described here because it contains code to recognize the abuild 1.0 build tree structure (with external
directories and unnamed trees) as well as the simpler 1.1 format. We omit those details from the description and refer
you instead to comments in the code. Continuing with our description of the 1.1 traversal algorithm, we just read
each build item's Abuild.conf doing a breadth-first traversal of the tree formed by following child-dirs keys. If the
child directory does not exist and the forest has a backing area, we ignore this condition. This is what allows backed
forests to be sparse. Otherwise, if the directory exists, it must have an Abuild.conf, and no directory between the child
directory and the parent may have Abuild.conf files (possible only if a child-dirs value has multiple path elements).

After traversing the local forest, abuild traverses each backing area, creating a separate BuildForest object for each
backing forest. Finally, once abuild has traversed all the build items in all known forests, abuild creates a dependency
graph of backing areas. Then, working from the leaves of the dependency graph, it copies into the forest from the
backing areas all the BuildTree and BuildItem objects of items and trees that do not appear locally and increments
the backing depth of the local copies. Items that are marked as deleted or that are in trees that are marked as deleted
are not copied. Also, trees that are marked as deleted are not copied. This is where abuild notices if you have multiple
backing areas and one of them backs to another. In this case, abuild simply ignores the further back of the backing
areas since it will already get copies of those items and trees through the closer backing area.

Finally, after all the traversal is completed, abuild validates each forest, again starting with the furthest back forest and
working toward the local forest. Numerous validations are performed. For details, please refer to the validateForest
method in the abuild source code.

33.4. Compatibility Framework
Internally to abuild's implementation, there is an object called CompatLevel that encapsulates the compatibility level
for any given run of abuild. The code itself is careful to wrap deprecated or backward compatibility code in checks

Abuild Internals

217

to compat_level.allow_1_0() (or whatever version is appropriate). This helps to keep backward compatibility code
isolated and makes it easy to remove at some future time. It also makes it relatively straightforward to implement being
able to run abuild at a newer compatibility level.

Many of abuild's test suites run the same tests at different compatibility levels to ensure that, when compatibility code
is not required, it doesn't get in the way.

If one were to remove compatibility code from abuild, it would be necessary to check for variables that are no longer
used because of the removal of compatibility support. The intent is that all such variables are commented with some-
thing that contains the string compat. Searching for compat should be an excellent starting point for locating all
backward compatibility code.

As of version 1.1, there is no backward compatibility code in the Groovy backend (since it is new in 1.1) or the old
ant backend (since it is deprecated in 1.1). When abuild invokes the make backend, it passes the compatibility level
in a make variable. This makes it possible for various make code to be conditional upon whether a particular version
is supported. In versions after 1.1, if the need arises, a similar capability could easily be added to the Groovy backend
by using the BuildArgs object to hold into this information.

33.5. Construction of the Build Set
This section describes the process that abuild uses to construct the build set. First, abuild creates a list of build items
that directly match the criteria of the specified build set. If --only-with-traits was specified, only build items that
match the build set criteria and have all of the named traits are included. This is considered the explicit build set. In
the absence of --related-by-traits or --apply-target-to-deps, this is the set of build items that will be built with any
explicitly specified target.

Once this is finished, expansion of the build set is performed based on dependencies, build-also specification, traits, or
reverse dependencies. Expansion is performed in two phases. In the first phase of expansion, all dependencies of any
item in the build set is added to the build set, as are any item specified in any build-also key of any item's Abuild.conf.
In the second phase, the build set is additionally expanded based on traits or reverse dependencies. Specifically, if
abuild was invoked with the --with-rdeps option, all direct or indirect reverse dependencies of every item in the build
set are added to the build set. Then, if --related-by-traits was specified, every build item that is related to an item in
the set by the named traits is added to the build set.

After the completion of phase 2, we repeat the expansion process until we go through an expansion pass that adds no
items. During repetitions of the expansion, the default behavior is that only phase 1 (dependencies and build-also) is
repeated. However, if --repeat-expansion was specified, then phase 2 is repeated as well.

To understand the distinction between whether phase 2 of the expansion process is repeated, consider the following
scenario. Suppose the original build set contains A and B, and that AC-test is declared as a tester of item A, which is
in the build set, and also of item C which is not in the build set. If we are adding items related by the tester trait, the
AC-test build item will be added to the build set. Assuming AC-test depends on C, then C will also be added to the
build set since this is part of phase 1 of the expansion, which is always repeated until no new items are added. Now if
there is another build item called C-test that tests C, it will only be added to the build set if --repeat-expansion was
specified since it test an item that wasn't an original member of the build set. 1 When --with-rdeps is specified, the --
repeat-expansion option is likely to have a much greater affect. In fact, it will cause any build item that is reachable
in the dependency graph from any initial build item to be added to the build set. For many build trees, the combination
of --with-rdeps and --repeat-expansion may end up causing every build item to be built. 2

1 In versions of abuild prior to 1.0.3, the second expansion phase was never repeated. In version 1.0.3, it was always repeated. When the --with-
rdeps flag was introduced in abuild 1.1 and reverse dependency expansion was added to the second phase of expansion, the differences between
repeating and not repeating the second phase became significant, so the --repeat-expansion option was added.
2 Formally, if the dependency graph is divided into independent sets, the combination of --with-rdeps and --repeat-expansion will cause inclusion
of all build items in any independent set that contains any of the initial build set members.

Abuild Internals

218

33.6. Construction of the Build Graph
During validation, abuild creates a DependencyGraph object to represent the space of build items and their depen-
dencies. It performs a topological sort on this graph to determine dependency order as well as to detect errors and
cycles in the dependency graph. During the actual build, abuild needs to expand the dependency graph to include not
just build items but build item/platform pairs. Every “instantiated” build item has to exist on a particular platform. We
refer to this platform-aware dependency graph as the build graph. The build graph can be inspected by running abuild
with the --dump-build-graph command-line option. For information about the format of this output, see Appendix H,
--dump-build-graph Format, page 305.

33.6.1. Validation
There are several steps required in order to determine exactly which build items are to be built on which platforms and
which build item/platform pairs depend on which other pairs. Before we do anything else, we need to perform several
validations and computations. The first of these is the determination of what platform types a build item belongs to.
For most build items, this is simply the list of platform types declared in the build item's Abuild.conf file. For build
items that have no build or interface files, there are no platform types declared. In this case, the rules are different:
if the build item declares any dependencies and all of its directly declared dependencies have identical platform type
sets, then the build item inherits its platform types from the items it depends on. Otherwise, it has no platform types
and has the special target type all. Note that this analysis is performed on build items in reverse dependency order
(forward build order). That way, every build item's platform types and target type has been determined before any
items that depend on it are analyzed.

Once we have determined the list of platform types for each build item, we can figure out which platforms a build
item may be built on. We refer to the list as the buildable platform list. The buildable platform list for a build item is
included in the --dump-data output (see Appendix F, --dump-data Format, page 296). Note that this is generally
a broader list than the list of platforms on which a given build item will actually be built; the actual build platform
list is determined later in the build graph construction process. For build items that have a specific target type and
platform types, the list of buildable platforms is the union of all platforms supported on all platform types a build item
has. For items of target type all, we don't explicitly compute a buildable platform list. These platforms are allowed
to “build” on any platform since there are no actual build steps for such build items. (Remember that for a build item
to have target type all, it must not have any declared platform types, and this in turn means that it must have no
build or interface files.)

When we compute the buildable platform lists, we also pre-initialize the build platform list (the list of platforms on
which the item will actually be built) by including all buildable platforms that are selected by default on the basis of
any platform selectors, as described in Section 24.1, “Platform Selection”, page 155, that may be in effect. For build
items of target type all, we would not add any items to the list at this step.

All of the above steps can be completed without knowing which build items are actually included in the build set.
These computations, in fact, are determined at startup for every build item in every known build tree regardless of
whether the items are in the build set.

The above validations are all completed before abuild starts to build. If any errors are found in the above checks, abuild
will report them and exit before it attempts to construct the build graph. This means that the build graph construction
itself can operate under the assumption that all of the above constraints have been satisfied.

33.6.2. Construction
The next step is the construction of the actual build graph itself. This is performed only when all previous validations
have been performed successfully, and this step is also performed only for build items that are actually in the build
set. We present a prose description of the process here. For a fully detailed description, please read the comments and
code in addItemToBuildGraph in Abuild-build.cc (and in other places it references) in the abuild sources.

Abuild Internals

219

We construct the build graph in reverse build order; i.e., we start with least depended-on build item and end with the
most depended-on build item. That way, each item is added to the build graph before any item it depends on is added.
This is the opposite of the order in which we compute the platform types. This makes it possible to modify an item's
build platform list while processing items that depend on it. Therefore, at the time a build item is added to the build
graph, its build platform list will have been fully computed. The build platform list may be the initial list as computed
during validation, or it may have been modified during the addition of its reverse dependencies to the build graph.
When a build item is added to the build graph, a node is added to the build graph for each platform on which the item
is being built. Each node of the build graph therefore corresponds to a build item/platform pair. 3

Then, for each direct dependency, we determine which instance of it (which of its platforms) we will depend on for
each of our platforms. If the dependency in question is declared with a platform selector, we pick the best platform
from among the dependency's buildable platform list that satisfies the platform selector and make this the override
platform. If there are no matches, it is an error. If an override platform is selected, it applies to this dependency for
all instances of the current item.

Next, still processing an individual dependency, we iterate through the item's list of build platforms to decide which of
the dependency's platforms each instance will depend on. We refer to this as the dependency platform. If we previously
computed an override platform for this dependency, we just use that as the dependency platform. Otherwise, we pick
the best match from among the dependency's buildable platform list. If the dependency is type all, it can be “built”
on any platform, so the dependency platform is the current build platform of the item. If the dependency is actually
buildable on the exact platform that we are considering, then it is the best match and the dependency platform is
the current platform. Otherwise, we have to search for a platform from a compatible platform type. To do this, we
determine the platform type that contains the current platform and then get a list of compatible platform types (as
discussed in Section 24.2, “Dependencies and Platform Compatibility”, page 157) in order of preference. Then we
iterate through this list until we find a platform type that is in the dependency's list of platform types. Once we have
identified this type, we find the best matching platform in that type and use that as the dependency platform. The best
matching platform will be first selected platform, or if no platforms are selected, then it will be the first unselected
platform. If no platforms are available, it is an error.

If we have successfully determined a dependency platform from among the dependency's buildable platform list, we
next add that to the dependency's actual build platform list if it's not already there. This is the mechanism by which
as-needed platform selection occurs. An example of this is presented in Section 24.5, “Cross-Platform Dependency
Example”, page 161. So if item A on p1 wants item B on p2, then item B will be built on p2 even if p2 would not
have been selected to build for B based on platform selectors. There are many ways in which this can happen including
B being in a different build tree with different plugins or A using a platform-specific dependency to depend on B.

33.6.3. Implications
Even if the exact steps of constructing the build graph are involved, there are some implications that are worth separate
discussion. Specifically, a build item of target type all may depend on any build item, and any build item may
depend on an item of target type all. For other build items, if a build item depends on another build item and declares
the dependency with a -platform=selector option, the dependency must have the platform type mentioned in the
platform selector. If a build item depends on another item without a platform-specific dependency, the dependency
must be buildable on at least one platform type that is compatible with (or exactly matches) each platform type of
the depending build item. Since all platform types are compatible with indep, this means that any build item may
depend on any other build item whose target type is platform-independent. (This was actually a special case
prior to abuild 1.1.4, but now it falls out from the fact that indep is made the parent platform type of all platform
types that don't declare a parent.) For example, if A has platform types X and Y and depends on B which has types
X, Y, and Z, this is okay because B has all of A's platform types. Likewise, if platform types X and Y both declared
type XY as a parent and B has types XY and Z, that would also be fine since each of A's types can be matched with

3 The actual build graph node is a string made up of three fields: a fixed-width numeric prefix representing the build tree, the item name, and the
platform name. Numeric prefixes for the trees are assigned based on a topological sort of the tree dependency graph. When build graph nodes are
sorted lexically, the result is a topologically sorted list of trees each containing a lexically sorted list of items in the tree. This is the mechanism that
abuild uses to build items in less dependent trees before items in more dependent trees.

Abuild Internals

220

at least one of B's types. It would be an error if B depended on A in either case since the instances of B building
for platform type Z would not be able to satisfy their dependences on A since it doesn't support that platform type or
anything compatible with that platform type.

Another important point involves the exact way in which we search for a compatible platform. Note that we first search
for a compatible platform type and, once we have found one, we pick the best platform in that type. This is subtly
different from picking the first matching platform from any compatible platform type. To illustrate the difference,
consider the case of A, which has platform type X, depending on B, which has platform types Y and Z, where X
declares Y as a parent and Y declares Z as a parent. In this case, A on X will always depend on B on Y even if Y has
no platforms and Z does. The reason for this is that platform types are static but platforms within types are influenced
by the environment. If Y has no platforms, this should result in a build error. If we fell back to Z, instead the lack
of platforms for Y would actually change the shape of the build graph, which goes against abuild's design. If it were
specifically desired to fall back on one thing if something else weren't available, there are ways to make that happen
(using autoconfiguration or other similar mechanisms) that don't require the actual build graph itself to change shape.

There are also some implications of the way pass-through items (items of type all) ignore dependencies when no
matching platform is available. This is discussed in Section 24.4, “Dependencies and Pass-through Build Items”, page
159. Specifically, if a pass-through item depends on multiple items of different types, it's possible for the pass-through
to effectively connect one of its reverse dependencies to multiple of its forward dependencies. So if A depends on
P which depends on one item of type indep and one item of A's platform type, A will end up with both of P's
dependencies in its dependency list. This is a consequence of the fact that the dependency platform computation is
performed separately for each build platform and for each dependency of a given item.

33.7. Implementation of the Abuild Interface
System
Up to this point, we have pretended that when abuild builds an item, it recursively reads the interface files of all its
dependencies. Although this is the effect of what the interface system does, it is not exactly what happens. In this
section, we will explain what really happens.

Internally, abuild implements an Interface object and an InterfaceParser object. Each InterfaceParser instance
contains one Interface object. We use one InterfaceParser instance to load each Abuild.interface file and all of its
after-build files. The scope of reset and reset-all statements is the InterfaceParser instance.

Internally, an Interface object maintains a list of variables, each of which has a declaration and a list of assignments.
Each declaration and assignment is marked with the file location (file name, line number, and column number) at
which it appeared. Additionally, assignment information includes any flag that the assignment may be conditional
upon. Abuild does not actually maintain the value of a variable. It only maintains the list of assignments. Values of
variables are computed on the fly as they are needed. For list variables, all assignment statements are maintained.
For scalar variables, we store first all fallback assignments in the opposite of the order in which they appeared (with
later fallback assignments being pushed onto the beginning of the history), the one normal assignment (as more than
one normal assignment is an error), and then all override assignments in the order in which they appear (with later
assignments added to the end of the history). When we perform a reset operation on an interface variable, we do not
store the reset operation (other than to record that it happened for purposes of showing it in the --dump-interfaces
output). Rather, we actually clear out the variable's assignment history. We discuss this further momentarily.

When a build item or another Interface object attempts to retrieve the value of a variable, abuild determines what
flags, if any, are in effect and filters out any assignments that are connected with flags that are not set. Then, for list
variables, the results of each remaining assignment are appended or prepended to the list, depending upon whether the
list was declared as append or prepend. For scalar variables, only the last item in the assignment history is used. In
this way, if there were only fallback assignments, the first fallback assignment would be at the end of the list. If there
were any override assignments, the last override assignment would be at the end of the list. If there were only normal

Abuild Internals

221

assignments, the normal assignment would be there. It is important that we maintain all of this information because
we might filter out some assignments based on flags. We discuss this in more depth below.

One Interface object may import other Interface objects. When one Interface object imports another, the object
merges the imported object's variable history with its own. Any declarations or assignments that are exactly duplicated
(that is, they have the same file location as a previously seen operation) are ignored. This is important since we may
import the same interface file through more than one path.

The import process is the only part of the interface system implementation that is affected by the scope of a variable
(whether the variable is a normal recursive variable or was declared non-recursive or local). Specifically, when
importing an interface, if the variable was declared as local, the declaration and assignments are both ignored by
the import process. If the variable was declared as non-recursive, the declaration is always imported, but only
assignments that were made in the item that owns the interface are actually imported. For example, suppose A imports
B's interface which in turn imports C's interface. In this case, A would not see the affect of any assignments to non-
recursive variables that were made in C since it does not directly import C's interface. It would also not see declarations
or local variable assignments to any local variables in either B or C.

There is a subtle aspect of how reset works in connection with loading interfaces as a result of the fact that a reset
actually clears the assignment history of a variable at the time of the reset operation rather than storing the reset as
part of the history. For example, suppose you have interfaces Q and R and that R imports Q, Q assigns to variable A,
and R resets variable A. If interface S imports just R, it will not see Q's assignment to A because that assignment is
not part of R. On the other hand, if S imports both Q and R in any order, it will see Q's assignment to A. If the reset
operation were actually part of the assignment history rather than being a local operation, then whether or not S saw
Q's assignment to A would be dependent upon the order in which S loaded Q and R. For items that are not in each
other's dependency chains, the order is not deterministic. This could cause very strange side effects: if one build item
depended on other, it could sometimes not see all of that item's interface because of some third item that did a reset.
Note also that abuild uses a single interface parser to load a given interface file and any after-build files, so a reset
in an after-build actually does effectively remove the effect of any assignments to that variable in the file that loads
it. Since a reset in an after-build file is not visible to the item itself, this is a useful construct for clearing interface
variables that a build item means to set for its own use but not for its dependencies. For an example of this construct,
see Section 27.1, “Opaque Wrapper Example”, page 179.

When a variable assignment is prefixed by a flag statement, the assignment entry that goes into the variable's assign-
ment history is associated with the name of the build item and the flag. When a variable value is retrieved, abuild
filters out any assignments that are marked with a flag that is not set. This makes it possible for abuild to store exactly
one representation of each interface object rather than having to keep track of different instances for each possible
combination of flags. It also makes it possible for different build items to actually see different results for the same
interface objects depending upon what flags they are requesting.

Abuild only turns on interface flags when it retrieves variable values for export into the automatically generated
file used by the back end (the dynamic output file, first introduced in Section 17.1, “Abuild Interface Functionality
Overview”, page 83). It does not have any flags set when it references variables inside of other Abuild.interface files.
For example, if A does this:

declare X string
declare Y string
X = v1
flag f1 override X = v2
Y = $(X)

the value of Y will always be v1 in every build item's dynamic output file regardless of whether or not that build item
sets the f1 flag in its dependency on A. This is because that is the value that X had at the time when Y was assigned
since the flag was not in effect during the parsing of the interface file. The value of X in the dynamic output files will be
dependent upon whether the flag is in effect for the dependency on A because abuild does set flags before generating

Abuild Internals

222

the dynamic output files. This makes sense when you consider that abuild reads each Abuild.interface file once for
each platform and that values of variables are not computed until they are needed.

33.8. Loading Abuild Interfaces
When abuild prepares to build, it creates the base Interface object by reading private/base.interface from the abuild
distribution. Then, for every item that is a plugin in any known build tree (remember: an item can be a plugin in
one build tree but not in another because plugin status is not inherited through tree dependencies), abuild creates
an InterfaceParser object, imports the base interface, and loads the plugin's plugin.interface file, if any. Plugins'
interface files are not allowed to have after-build files, so it is an error if any are declared.

After this preparation has been done, abuild constructs the build graph (see Section 33.6, “Construction of the Build
Graph”, page 218.) and traverses the graph in dependency order to build each build item/platform pair. For each
build item/platform pair, abuild creates an InterfaceParser object and retrieves the underlying Interface object.
Before loading that item's Abuild.interface file, if any, abuild first imports the base interface and the interfaces for any
plugin that pertains to this build item. (These would be all items that were declared as plugins in the build item's home
build tree.) Then it imports the interfaces of all of its direct dependencies which, as nodes in the build graph, are actually
build item/platform pairs. Those interfaces, therefore, already include the interfaces of their direct dependencies, and
so forth—this is how we achieve the effect of having each build item read the interfaces of its entire dependency chain.

Once this has been done, abuild performs override assignments for all variables that are specific to the build item
(ABUILD_THIS, ABUILD_OUTPUT_DIR, etc.) and then uses the InterfaceParser object to load the item's own
Abuild.interface file. At this point, the build item's interface is in the state required to build the item itself, so we
perform the build. If the build succeeds, we then see whether the Abuild.interface had any any after-build statements.
If so, we use the same InterfaceParser object to load those, verifying that each one has no after-build declarations
of its own. The resulting Interface object is then stored with the build item by platform so that it can be imported
by items that depend on it.

33.9. Parameter Block Implementation
The parameters function in the binding for scripts loaded by abuild's Groovy backend is actually a closure returned
by ParameterHelper.createClosure. This function takes a closure as an argument. In order to make things that look
like assignments inside that closure modify abuild parameters, the parameters call changes the delegate of the clo-
sure to an instance of ParameterHelper helper class constructed with a reference to the abuild object, an instance of
BuildState. Within ParameterHelper, the get, set, and leftshift methods are overridden to result in fields being
translated into ParameterHelper objects which, when assigned to or appended to, relay the action through appro-
priate calls in BuildState, which implements the Parameterized interface. The code is relatively small. For addi-
tional details, please find ParameterHelper.groovy and Parameterized.groovy in abuild's source code and look at the
parameter-helper test suite.

Part IV. Appendices

224

Table of Contents
A. Release Notes .. 225
B. Major Changes from Version 1.0 to Version 1.1 ... 257

B.1. Non-compatible Changes ... 257
B.2. Deprecated Features .. 258
B.3. Small, Localized Changes .. 259
B.4. Groovy-based Backend for Java Builds .. 261
B.5. Redesigned Build Tree Structure ... 261

C. Upgrading from 1.0 to Version 1.1 .. 263
C.1. Upgrade Strategy .. 263
C.2. Potential Upgrade Problems: Things to Watch Out For .. 264
C.3. Upgrade Procedures .. 265

C.3.1. High-level Summary of Upgrade Process ... 265
C.3.2. Editing abuild.upgrade-data ... 267

D. Known Limitations ... 269
E. Online Help Files .. 270

E.1. abuild --help groovy .. 270
E.2. abuild --help helpfiles .. 271
E.3. abuild --help make .. 271
E.4. abuild --help usage .. 272
E.5. abuild --help vars .. 275
E.6. abuild --help rules rule:empty .. 276
E.7. abuild --help rules rule:groovy ... 277
E.8. abuild --help rules rule:java ... 277
E.9. abuild --help rules rule:autoconf ... 289
E.10. abuild --help rules rule:ccxx ... 290
E.11. abuild --help rules toolchain:gcc .. 293
E.12. abuild --help rules toolchain:mingw ... 293
E.13. abuild --help rules toolchain:msvc ... 294
E.14. abuild --help rules toolchain:unix_compiler .. 295

F. --dump-data Format .. 296
G. --dump-interfaces Format .. 303
H. --dump-build-graph Format .. 305
I. The ccxx.mk File .. 306
J. The java.groovy and groovy.groovy Files ... 316
K. The Deprecated XML-based Ant Backend ... 331

K.1. The Abuild-ant.properties File .. 331
K.2. Directory Structure For Java Builds ... 333
K.3. Ant Hooks .. 334
K.4. JAR-like Archives .. 335
K.5. WAR Files .. 335
K.6. EAR Files ... 336

L. List of Examples ... 337

225

Appendix A. Release Notes
This table includes a list of user-visible changes or changes to the documentation broken down by the specific release
in which they were entered. This can help get you “caught up” if you are upgrading from an older release.

Note

If you are interested in seeing a summary of all the changes made between versions 1.0 and 1.1 of abuild,
please refer to Appendix B, Major Changes from Version 1.0 to Version 1.1, page 257. You can also
get this information from the release notes, but the information is presented there in a more compact and
organized fashion.

1.1.6: June 30, 2011

• Bug Fixes

• The verify-compiler command used for testing your own compiler plugins did not work with nested platform
types. Nested platform types were added to abuild in version 1.1.5, and compiler plugins worked with them;
it was only the verify-compiler command itself that was broken.

• When using qtest, the test-only target no longer depends on the all target.

• When dependencies are duplicated and platform specifications are associated with at least one of the depen-
dencies, it is reported as an error. In the past, the last platform specifier given would silently be used over
others, which could lead people to a false sense of security if they were trying to declare a dependency on
two different platform types.

• Enhancements

• Duplicated dependencies and duplicated tree dependencies are now reported as warnings.

• New variables ABUILD_TRAITS and abuild.traits are available to make and groovy (respectively) backends
that indicate which traits are declared for the current build item.

• A new interface variable, SYSTEM_INCLUDES has been added. For compilers that support it, any include
directory that starts with any of the values in SYSTEM_INCLUDES will be specified to compiler with a
flag that indicates that it is a system include directory. For details, see Section 17.5.2, “Interface Variables
for Object-Code Items”, page 91.

1.1.5: February 18, 2011

• Enhancements

• When abuild is run with the -k flag, the condition of a particular item not being able to be built on a particular
platform because a dependency can't be built on a compatible platform now causes a failure of only that item
on that platform rather than causing a failure of the entire build.

• Platform types may now have parents, which makes it possible to make some platform types specializations
of other platform types. This is discussed in Section 24.2, “Dependencies and Platform Compatibility”, page
157. Three sections of the documentation have been significantly updated based on this change: Chapter 24,
Cross-Platform Support, page 155, Section 29.3.1, “Adding Platform Types”, page 187, and Section 33.6,
“Construction of the Build Graph”, page 218.

• The skip platform selector may now be used without a platform type qualifier to prevent default selection of
any platform in any object-code platform type. See Section 24.1, “Platform Selection”, page 155 for details.

Release Notes

226

• The build-also key has been enhanced to allow specification of trees to build in addition to items. It also
allows options to be added to the build-also items to further refine what is built. The result is that anything
can be built from the command-line using build sets (except for the regular expression pattern build set), and
more, can now be specified in a build-also key. This enables much greater flexibility in creating project-
level top-level build items. For details, see Section 9.3, “Using build-also for Top-level Builds”, page 41.

• Miscellaneous Changes

• Minor tweaks were made to abuild's code and test suite to enable it to be built with Visual C++ 2010 and
boost 1.43.

• The embedded version of Groovy has been updated to 1.7.8.

• Bug Fixes

• A bug to the groovy backend that prevented relative directories from working properly when assigned to
java.dir.src and similar variables has been fixed. Thanks to Brian Reid for the report, test case, and proper
diagnosis for the problem.

1.1.4: February 17, 2011
This release was not made publicly. It was basically what 1.1.5 is except that it had a logic error that rendered it
inoperative under certain conditions. The problem was caught moments after internal release but prior to public
release.

1.1.3: October 1, 2010

• Output Capture

• Abuild is now able to capture the output of builds and associate each line of output with the build item that
produced it. For additional details, please see Chapter 20, Controlling and Processing Abuild's Output, page
119.

• It is now possible to have abuild prefix every line of normal output and/or every line of error output with
fixed prefixes. For details, see Chapter 20, Controlling and Processing Abuild's Output, page 119.

• Bug Fixes

• File-specific variables for XCPPFLAGS, XCFLAGS, and XCXXFLAGS were referenced in a manner that
prevented them from being properly expanded. They are now properly expanded, so their values may include
references to other variables.

• Miscellaneous Enhancements

• The codegen-wrapper command now accepts the --normalize-line-endings flag, which tells it to disregard
differences in line endings when checking cached files to see whether their sources have changed. Thanks
to Jeremy Trimble for the suggestion.

• When a platform plugin's list_platforms script had Windows-style line endings, abuild (or, more accurately,
the underlying system) would produce a confusing error message when trying to execute the script. On non-
Windows systems, abuild now explicitly calls your attention to the incorrect line endings if list_platforms
fails.

• The first line of output produced by the processing of any build item now always includes an indication of the
build item name and output directory. In prior versions, there were certain rare instances in which this would
not happen. For example, if an interface-only build item depended on two other items whose Abuild.interface
files declared conflicting variables, abuild would complain about the conflict and indicate where it occurred,

Release Notes

227

but it would not provide any hint as to what build item caused the two interface files to be loaded together.
Now abuild will always indicate which build item is responsible for causing the problem to be detected.

• When a platform selector specifies a platform type, platform, compiler, or option specification that doesn't
match any items anywhere in the entire forest, abuild now reports that as an error. It remains (and must
remain) perfectly normal for platform selectors to apply to only a subset of the trees or items in a forest
since most plugins only apply to subsets of the forest. The previous behavior of ignoring invalid platform
types in platform selectors was intended to allow the same platform selectors to work across multiple forests,
but in practice, having abuild tell you about potential typos in platform selectors is much more important
functionality, and it's not really practical to use the same platform selectors across multiple forests in general
anyway.

• Documentation Changes

• New help topics, make and groovy, provide brief reminders of things you can do in Abuild.mk and
Abuild.groovy files or local rules files that they reference.

• Fix errors in documentation for global plugins and platform selectors.

• Create new section on capturing and parsing abuild's output.

1.1.2: April 16, 2010

• Java Backend Implementation Changes

• A minor improvement has been made to how abuild communicates with its java backends. This is not a
user-visible change, but should eliminate any possibility of protocol errors between abuild and its backend.
This problem has never been reported in production, but there was a race condition under which it was
possible.

• Abuild invokes the JVM that runs the Java backends with a parameter that sets the maximum PermGen space
to 200 megabytes, overriding the default of 64 megabytes. This should hopefully eliminate the out of memory
problems that are sometimes encountered with large builds.

• New command line arguments --jvm-append-args ... --end-jvm-args and --jvm-replace-args ... --end-
jvm-args have been added to provide finer control over how the JVM that runs abuild's java backends is
invoked. These options are intended for use in debugging abuild. If you have to use them to make your build
work, you should submit a bug report with the details.

1.1.1: March 1, 2010

• Bug Fixes

• The Groovy-based Java backend was separating elements of the manifest classpath with the path separator
rather than a space character. Thanks to Brian Reid for the fix.

• Fix threading error in the Groovy backend that could, on very rare occasion, cause a crash with multithreaded
builds. Thanks to Katie Outram for observing and reporting the problem.

• The Groovy backend was not including the classes directory in the compile-time classpath. This prevented
java and groovy compiles in the same build item from being able to see each other's classes.

• Other Changes

• For compatibility with abuild 1.0 and to reduce warnings with ant version 1.8.0, the Groovy backend
sets includeantruntime to false by default in the javac task. This can be overridden by setting the
java.includeAntRuntime parameter in Abuild.groovy.

Release Notes

228

• Minor fixes were made to abuild's ant backend to make it work properly with ant version 1.8.0. Due to a bug
in ant, abuild's test suite may fail in spite of proper operation. For details, please see ant bug 48746 [https://
issues.apache.org/bugzilla/show_bug.cgi?id=48746] for details.

• Minor fixes were made to abuild's build so that it works properly on systems that require special arguments
to use pthread.

• A new build set descdeptrees has been added. This is the intersection of desc and deptrees. It does what
desc did in abuild 1.0 and was added just so that there was a 1.1 equivalent to abuild 1.0's desc build set.
Most users will never need to use this build set.

• Environment variable references in interface files may now be specified with defaults. To do this, use
$(ENV:VARIABLE:default-value). The default-value portion of the variable reference may not contain
spaces or parentheses.

• Command line parameters may now also be referenced from interface files. To do this, use
$(PARAM:PARAMETER) or $(PARAM:PARAMETER:default-value). The default-value portion of
the variable reference may not contain spaces or parentheses.

1.1.0: December 7, 2009

• Miscellaneous Changes

• Abuild version 1.1.0 runs at compatibility level 1.1 by default. You can still turn on backward compatibility
with 1.0 by running abuild with the --compat-level=1.0 flag or by setting that ABUILD_COMPAT_LEVEL
environment variable, though it is recommended that you do this only while upgrading trees to avoid acci-
dentally re-introducing deprecated features. Also, abuild will often be able to give a clearer error message
with backward compatibility mode turned off.

• The embedded version of Groovy has been updated to 1.6.7.

• The verify-compiler command now accepts the --cross option to better support cross compilers that are in
the native platform type. See Section 29.4, “Adding Toolchains”, page 188 for a discussion.

• Usability Improvements

• When error messages are tied to a file but not to a specific line in the file, the error message now assumes
the line number “1” rather than not outputting a line number. This makes tools like emacs, vim, or eclipse
that can automatically take users to the error location more likely to handle those conditions.

• The format of the build duration has been changed to something that is not mistakenly interpreted as an error
message by vim.

• Bug Fixes

• Initialize ant Project properly so that tasks using the deprecated xml-based ant framework can properly
access System.in.

• Tighten up the logic for detecting tree roots in partially upgraded build trees. This reduces the number of
false positives when running an upgrade process over an already upgraded forest, though it does not entirely
eliminate them. The upgrade caveats section of the documentation has also been clarified slightly.

1.1.b6: November 10, 2009

• Core Functionality Changes

https://issues.apache.org/bugzilla/show_bug.cgi?id=48746
https://issues.apache.org/bugzilla/show_bug.cgi?id=48746
https://issues.apache.org/bugzilla/show_bug.cgi?id=48746

Release Notes

229

• The implementation of global plugins has changed again. Now, instead of having items declare themselves
to be global plugins, a tree can declare a plugin to be global for the forest by adding the -global flag to the
plugin declaration in Abuild.conf. This actually makes global plugins usable in a real setting.

• Bug Fixes

• The logic to detect shadowed plugins has been corrected to eliminate false positives and to provide enough
information to resolve the problem. In many cases, multiple distinct error messages will be issued when a
plugin is actually shadowed, but this is better than not having the required information to resolve the problem.

• Minor Updates

• Parsing of interface files has improved slightly. Some abuild reserved words are now valid on the right hand
side of assignments without quoting, and handling of whitespace is more robust, including allowing lines to
be split with continuation characters in some places where they could not previously be split.

• When an abuild 1.0-style Abuild.backing file is found in an otherwise upgraded area, a deprecation warning
is given rather than telling the user to run the upgrade process.

1.1.b5: October 28, 2009

• Core Functionality Changes

• The -optional flag may follow a child directory in the child-dirs key in Abuild.conf. In this case, abuild will
not complain if the child directory is missing. This can be especially useful for Abuild.conf files that may
contain that are optional trees or optional dependencies.

• Windows-related Enhancements

• Both the mingw and msvc toolchains now create DLL file names that include the major version number of the
library. The static library that goes with the DLL remains versionless so that linking works, but executables
that use the DLL will expect its name to contain the version number. This is described in Chapter 21, Shared
Libraries, page 123.

1.1.b4: September 28, 2009

• Core Functionality Changes

• The global tree dependency feature has been removed as there was no way to make its use practical. As
such, global plugins no longer have to be in trees declared as global tree dependencies. Instead, abuild dis-
regards tree dependency-based access checks when turning on global plugins. To ensure build consistency
when global plugins are used, abuild disallows use of global tree dependencies if any tree in the forest uses
external-dirs. Otherwise, a global plugin may not be in effect if a build were started in the root of an external
tree from which the real forest root could not be determined.

• Changes to Deprecated xml-based Ant Framework

• The file preplugin-ant.xml is now imported for each plugin prior to loading the local build file or running any
targets. This makes it possible for a plugin to override built-in tasks, set properties, and do other activities
that would not be possible from inside of hooks. This was introduced primarily to support static analyzers
and similar tools that require replacing built-in tasks.

1.1.b3: July 28, 2009

• Command-line Parsing Improvements

Release Notes

230

• When specifying build set options cases, later options now supersede earlier ones rather than contradicting
them. This makes it possible to alias abuild to abuild --no-deps, abuild --build=desc, or other similar in-
vocations to suit your preferences while still being able to get different behavior just by appending additional
arguments on the command line.

• As a convenience, abuild now recognizes abuild --build=set clean as a synonym for abuild --clean=set.
This means that if you have abuild aliased to abuild --build=desc, typing abuild clean will now have the
effect of running abuild --clean=desc.

• Abuild's command-line parsing has been made more flexible. For options with arguments, --option=value
and --option value both work, among other possibilities. In previous versions of abuild, there were incon-
sistencies in how options took arguments.

1.1.b2: June 13, 2009

• Miscellaneous Changes

• Reworked the mutex protection in main build loop slightly to remove all possibility of concurrent write
access to shared data during a multithreaded build. This appears to have removed a rarely encountered race
condition in which abuild could crash while building multiple instances of the same build item on multiple
platforms simultaneously in separate threads.

• The --dump-build-graph option has been changed to output XML data and is now always included in the
output when abuild is running in monitored mode. A new directory, misc/xslt has been included in the abuild
distribution that includes some sample XSL-T script that can process some of abuild's XML output. There
are three scripts that generate dot output of various dependency graphs. This output is intended to be used as
input to the dot program, which is part of graphviz [http://www.graphviz.org]. Thanks to Joe Davidson for
the dot code and the idea of using graphviz to visualize the build graph.

• Moved reference DTDs from src to doc so that they're in the same place in the source and binary distributions.

1.1.b1: May 22, 2009

• Version numbering

• The version numbering conventions for abuild have changed slightly such that the first 1.1 release will be
called 1.1.0 instead of just 1.1. This makes the phrase “abuild 1.1” unambiguously refer to all 1.1.x releases
rather than just the first 1.1 release, which will now be called 1.1.0.

• Documentation Updates

• There are no significant user-visible changes in functionality between the latest alpha release and this first beta
release of version 1.1. The principal change is that the documentation has been largely brought up to date. The
documentation is still very rough and incomplete in several places, and it has not yet had a full proofreading
pass. However, in most cases, it should now accurately reflect abuild 1.1 functionality. Additionally, many
new sections have been added. Of particular interest are Appendix B, Major Changes from Version 1.0 to
Version 1.1, page 257 and Appendix C, Upgrading from 1.0 to Version 1.1, page 263.

• Other Changes

• QTest-based test suites are now invoked using a custom qtest ant task from both the Groovy backend and the
legacy ant backend. This means that when qtest-based test suites are run on Windows from the legacy-based
ant backend, it now works to have qtest-driver be a shell-script wrapper around the actual perl implemen-
tation.

http://www.graphviz.org
http://www.graphviz.org

Release Notes

231

1.1.a9: May 4, 2009

• Enhancements to gcc toolchain support

• The behavior of ABUILD_FORCE_32BIT has been expanded, and the variable ABUILD_FORCE_64BIT
has been added. If exactly one of these variables has the value “1”, the option -m32 or -m64, as appropriate,
will be added to all gcc compilation steps. Additionally, in some cases the CPU portion of the platform string
may be changed. This is a generalization of the behavior introduced in version 1.0.1, and also a change of the
status of the ABUILD_FORCE_32BIT variable to “supported” instead of temporary, at least pending some
better solution.

• Core Functionality Changes

• The attributes key in Abuild.conf may now have the value serial for any build item that is built with GNU
Make (i.e., any build item that has an Abuild.mk file). In this case, abuild will never instruct make to build that
item in parallel even if --make-jobs is specified. This is useful for build items that, for whatever reason, do
not build properly in parallel. Many build items that use autoconf will benefit from setting this, as will builds
that use other tools that create temporary files whose names may clash with other instances of themselves.

• The behavior of whether expansion by trait and reverse dependency is repeated has changed again. Now,
expansion by related traits or by reverse dependency is performed only once by default. In order to have the
expansion process repeated until no more build items are added, specify the new option --repeat-expansion.

• Groovy Framework Changes

• The junit test target now accepts attributes that allow the batchtest task to be run in addition to or instead
of the test task.

• Bug Fixes

• Fix bug that caused an assertion failure when platform selectors were used if there were any platform-specific
dependencies on java build items.

1.1.a8: April 22, 2009

• Bug fixes

• Various refinements have been made to abuild's multithreaded building code, which should improve both
performance and reliability of multithreaded builds. This includes correction of a few possible race condi-
tions, strengthening of multithreaded testing in the test suite, and correction of a long-standing problem that
was visible only on Solaris but actually turned out to be present on all platforms.

• The java builder code has been corrected so that it invokes IBM's JDK according to its requirements.

• The built-in support for sun RPC's rpcgen has been fixed to avoid using a GNU-specific option to sed.

• Building abuild

• Abuild now uses a re-entrant scanner in the lexical portion of the interface parser, which should further
simplify building abuild. Additional notes have been added to src/README.build regarding this and other
build-related issues.

1.1.a7: April 20, 2009

• Deprecated Features

• The interface variable ABUILD_THIS is no longer deprecated. We can't really deprecate an interface variable
because there's no way to detect or warn for the use of a specific variable in backend configuration files.

Release Notes

232

People should use ABUILD_ITEM_NAME instead of ABUILD_THIS, but the ABUILD_THIS variable will
stick around.

• The --ant command line option, which had been removed in an earlier alpha release, has been restored, but
it only supports arguments of the form -Dprop=value. Using it will generate a deprecation warning and will
point out the new syntax. This is to make it easier for users to discover the new way to pass parameters to
builds and to avoid breaking some scripted builds.

• External directories crossing symbolic links is no longer an error condition. Instead, this will generate a
deprecation warning, and abuild --upgrade-trees will refuse to upgrade any build trees that have symbol-
ically linked externals. This change should make it easier for people to test abuild 1.1 without having to
make unwanted changes to their build areas, particularly when things outside of abuild may be relying on
the symbolic links. As allowing symbolically linked externals is just postponing the inevitable, people are
still encouraged to avoid them.

• Usability Features

• Add new flag --find that can be used to show the location of a build item or build tree. Use abuild --find
item-name to show the location and containing tree name of a build item, and abuild --find tree:tree-
name to show the location of a tree name.

• Abuild is somewhat quieter with --silent than it used to be.

• Bug Fixes

• Older versions of abuild would allow assignment of multiple words to scalar interface variables. This was
never intended functionality, and only happened to work because of the syntax of make and ant. With the
Groovy backend, this actually causes a problem, so abuild no properly gives an error when multiple words
are assigned to a scalar interface variable. (Thanks to Brian Reid for noticing the problem.)

• New Help System

• Abuild has a new help system. The new help system provides a more robust ways for help to be provided
for built-in and user-provided toolchains and rules. Pending full documentation, run abuild --help help for
details. For information on creating help files, see src/manual/pending.txt. Help files have not yet been written
for all built-in rules and toolchains, but this will be done prior to the release of abuild version 1.1.

• The targets rules-help and interface-help have been removed. For the ant framework, the targets proper-
ties-help and hooks-help are still there since the new help system does not have any support for the ant
backend.

• Improved Code Generator Support

• A new tool, util/codegen-wrapper, has been provided. This tool can be used to wrap code generation that
uses optional code generators. It is invoked with a source directory (automatically supplied by abuild), a
cache directory, a list of input files, a list of output files, and a command used to generate the output files. It
caches the generated output files and checksums of the input files. If all input files have matching checksums
and all output files are present in the cache, codegen-wrapper will copy the cached output files into the
output directory. Otherwise, it will run the command and then cache the output files and update the input file
checksums. Pending documentation of this tool, see src/qtest/abuild-misc/codegen-wrapper for an example
of its use.

• Abuild uses codegen-wrapper in its own build. As such, the save-autos target and all support for it have
been removed from the build of abuild itself. The abuild source, as distributed, now includes automatically
generated scanners and parsers, so flex and bison are no longer needed to build it from the source distribution.

• Backend Changes

Release Notes

233

• Reverted earlier change to the order in which plugin.mk files are loaded relative to Abuild.mk. As in abuild
1.0, abuild 1.1 now loads plugin.mk after loading Abuild.mk. A new file, preplugin.mk, is now loaded before
Abuild.mk to allow plugins to provide initialization that is run prior to parsing of the Abuild.mk file. The
previous change to loading order was an unnecessary non-backward-compatible change.

• To be consistent with the make backend, the file plugin.groovy is now loaded after Abuild.groovy, and the
file preplugin.groovy has been provided for pre-plugin initialization.

• QTest support for both make and Groovy now exports the TC_SRCS variable automatically.

• Built-in flex and bison support have been expanded to use the codegen-wrapper. The variables
FLEX_CACHE and BISON_CACHE must be set to enable this.

1.1.a6: April 13, 2009

• Ant framework

• Reverting an earlier change, abuild will no longer import ant-hooks.xml or plugin-ant.xml files. This en-
hancement to the ant framework had unintended side effects that broke some existing builds. As the goal is to
move from the ant framework to the Groovy framework, we wish to avoid any needless distractions caused by
changes to the ant framework. This means that it is once again no longer possible to add targets in hook files.

• Core Functionality Changes

• Both item dependencies and tree dependencies can be made optional by adding the -optional flag to them
in Abuild.conf. Optional dependencies are ignored if the items referenced do not exist. For details, see src/
manual/pending.txt.

• New command-line argument --with-rdeps causes expansion of the build set to include reverse dependencies
of all items in the build set. Running abuild --with-rdeps in a build item's directory would cause all items
that depend on it, directly or indirectly, to be built.

• Visual C++ Toolchain Changes

• New make variables have been added for increasing the flexibility of configuring Visual C++. See Sec-
tion 18.2.2, “Options for the msvc Compiler”, page 98.

• Building Abuild

• Abuild does a better job of detecting the appropriate libraries for networking, threading, and boost. In partic-
ular, when using a custom installation of boost, it is necessary only to set BOOST_TOP to the location of the
boost installation. Abuild's build will automatically figure out includes, library paths, preprocessor settings,
and library naming conventions. For details, see src/README.build.

1.1.a5: April 7, 2009

• Non-compatible changes

• Absolute path externals are no longer supported.

• The --winpath option to externals has been removed. Without absolute path externals, it is no longer needed.

• Note: in a later release, this was changed to a warning. Externals may no longer be symbolic links nor may
they cross symbolic links. If you were relying on symbolically linked externals before, you can instead create
dummy directories with Abuild.backing files or with their own externals pointing to the real location.

Release Notes

234

• Read-only externals are no longer supported. Use of the -ro flag generates a deprecation warning and is
ignored. Instead, if you need to make parts of your build tree read-only, use --ro-path or --rw-path (described
below). This gives you much greater and more precise control over what is read-only than read-only externals
did.

• Child directories (specified with child-dirs) may no longer be nor may they cross symbolic links. Most likely,
this would not have worked in previous versions either, but abuild now specifically checks for this case.

• When parent-dir appears, it must point up, and child-dirs values must point down in the file system. “In-
terleaved” build items are no longer permitted. There must be no Abuild.conf files in any directories between
a parent directory and its child build items. In practice, the chances of ever finding a build tree that doesn't
already obey these restrictions are very low, and any configuration that fails to follow these guidelines would
have been very confusing, so this change is not likely to be noticed.

• Deprecated Features

• Use of read-only externals generates a deprecation warning, but in fact, it's more than deprecated—it's entirely
ignored. The deprecation warning indicates that use of -ro could potentially become an error in a post-1.1
abuild release.

• Use of external-dirs to point to a build tree that has been upgraded to use 1.1 syntax will generate a depre-
cation warning.

• Use of this, deleted, or parent-dir in Abuild.conf, or having a tree root that does not include the tree-
name key will generate a single warning suggesting that you should upgrade your build trees using abuild
--upgrade-trees. The specific locations of the deprecated features is not reported. This is to discourage
attempts to manually upgrade trees. The upgrade process is complex, and all the complexities are managed
automatically by abuild --upgrade-trees. In general, abuild tries to avoid suggesting that you run an upgrade
if it concludes that the upgrade will not be able to do anything. Detailed documentation of the upgrade process
will be included in the manual prior to the final 1.1 release. In the interim, see src/manual/pending.txt in
the source distribution.

• Use of Abuild.backing files below the root of the build forest (defined) below is deprecated. A new syntax
for Abuild.backing files has been introduced and is also described below. Use of the old format is deprecated.

• Note: ABUILD_THIS was removed from the deprecated list in a later release. The interface variable
ABUILD_THIS is deprecated and has been replaced by ABUILD_ITEM_NAME. Note that abuild is not able
to detect use of $(ABUILD_THIS) in Makefile fragments. It will, however, warn about them when they are
used in Abuild.interface files.

• Pending Documentation

• Documentation for significant new features that have not yet been incorporated into the manual now appear
in the file src/manual/pending.txt.

• Groovy Framework Changes

• Compiled rules files are now cached, resulting in a significant performance improvement.

• When the groovy rules are used, Groovy sources are now expected to be in src/groovy instead of src/java.

• The package-rar target has been replaced with package-high-level-archive. Various parameter and attribute
names have been updated for consistency. The java rules should now be considered in a soft freeze for
version 1.1. Non-compatible changes can still be made for cosmetic reasons or to fix minor problems, but
the rules should be in pretty close to final form. Generation of javadoc and junit testing may still change
more significantly.

Release Notes

235

• Compatibility Mode

• Compatibility level can be set using the ABUILD_COMPAT_LEVEL environment variable in addition to use
the --compat-level command line argument.

• New Build Tree Structure

• This version of abuild includes a new build tree structure. The highlights of this structure are named build
trees, name-based tree dependencies instead of externals, multiple backing areas, improved build ordering,
and removal for the need of parent-dir.

With the exception of the non-compatible changes listed above, abuild will continue to recognize the old
build tree structure and will internally map it to the new structure by assigning randomly generated names to
build trees. If abuild finds deprecated 1.0 features while traversing the build tree, it will notify the user that
the trees can be upgraded with the abuild --upgrade-trees command. Needless to say, if you are trying to
use the same build tree under both versions 1.0 and 1.1 (during a transition period), you should hold off on
performing your upgrades. Upgraded trees will not be recognized by abuild 1.0.

The way backing areas work has been significantly improved. As in the case of the new build tree structure,
abuild will continue to recognize 1.0-style Abuild.backing files when running in 1.0 compatibility mode (the
default).

For a brief summary of changes in the new build tree structure, please refer to Section B.5, “Redesigned
Build Tree Structure”, page 261.

• New interface variables ABUILD_ITEM_NAME and ABUILD_TREE_NAME have been introduced. These
variables contain the value of the current build item name and its containing tree. The ABUILD_ITEM_NAME
variable replaces the deprecated ABUILD_THIS variable.

• Command Invocation Changes

• Build set all builds all items in all known trees as before, but with the new build structure, this may include
trees that were not previously included. In particular, abuild now knows about all trees in the forest, not just
those that are tree dependencies of the current build item.

• The new build set deptrees builds all items in the current tree and all its tree dependencies. It has the same
semantics as all had in abuild 1.0, and does the same thing as all in 1.0-compatibility mode.

• New arguments --ro-path and --rw-path have been added. These replace read-only externals as the way to
make parts of the local build forest read-only. See discussion in src/manual/pending.txt for details.

• New option --no-deps is described below.

• Build Behavior Changes

• When abuild is run with no build set arguments, --with-deps is enabled by default. In order to build a build
item without its dependencies (effectively assuming that the dependencies are up to date), run abuild with
the --no-deps option.

• Removed all clean targets previously provided by backends. In older versions of abuild, the clean target was
passed to the backend under the special case of abuild being invoked from inside the output directory. Now
abuild implements the clean target internally for that case. Abuild always has and continues to implement
clean internally for invocations that are not in an output directory.

• Abuild always has and continues to guarantee that it will build all dependencies of an item before it builds the
item. Previous versions of abuild would rearrange an initial build that built all items alphabetically, deviating
from that order only to satisfy dependencies. Abuild now uses, as an initial ordering, build items sorted

Release Notes

236

alphabetically within trees, with trees sorted in dependency order. In other words, if tree A declares a tree
dependency on tree B, then abuild will build all items in A before building any build items in B. As always,
build ordering is considered an implementation detail that should not be relied upon.

• Platform Changes

• Platform-specific dependencies now obey user-supplied platform selectors. The rationale for not doing this
before was that the command-line and environment should not affect the shape of the build graph, but that's
not really a good reason since this is a myth anyway. People can always run with DFLAGS=-g or set an
environment variable used by a specific platform plugin's list_platforms script to suppress the platform.
If a specific compiler or option is required, it can be specified explicitly with the platform-specifier in the
dependency.

To explicitly disregard user-supplied platform selectors, it is possible to specify "default" as the platform
selector, as in

deps: item -platform=platform-type:default

It is also possible to specify an explicitly empty option, as in

deps: item -platform=platform-type:option=

Both the empty option and default platform selector are available on the command-line as well, making
it possible to run

abuild -p option=debug -p native:default

or

abuild -p option=debug -p native:option=

• Abuild now passes information about the native platform to all list_platforms programs, which are supplied
by plugins that are offering support for new compilers. list_platforms is now invoked as follows:

list_platforms [--windows] --native-data os cpu toolset

• Core Functionality Changes

• Abuild now supports global plugins. This is implemented through introduction of a new, general-purpose key
in Abuild.conf: attributes. (Note: implementation of this feature was changed in a subsequent release.) This
key can be used to flag certain build items as having specific properties that abuild recognizes. At present,
only two attributes are recognized:

• Note: this feature was removed in a subsequent release. global-tree-dep: This attribute may be assigned
to any root build item of an explicitly named tree. Such a tree may not have any tree dependencies of its
own and is implicitly treated as if it were declared as a tree dependency by all other trees.

• Note: this feature was changed in a subsequent release. global-plugin: This attribute may be assigned to
any build item that otherwise meets the qualifications for being a plugin. It must reside in a tree with the
global-tree-dep attribute. Note: global-tree-dep was removed in a later release. This item will then be
treated as if it had been explicitly listed as a plugin for all build trees. This is a very powerful feature which
must used with care. Good uses for it might include implementing project-wide checks, such as making
sure appropriate environment variables are set or appropriate dependency rules are followed, or for adding
new platforms or platform types that may be used by all build items in a forest. Care should be taken to

Release Notes

237

avoid introducing global plugins that wider consequences than you might initially expect. Global plugins
should generally be coded in such a way that their impact can be disabled in some way.

• Implemented abuild --upgrade-trees. You should use this command to upgrade your build trees rather than
attempting to upgrade your trees manually. Although abuild will work fine with mixed 1.0/1.1 trees, you will
get a lot more warnings and possibly incorrect results in some cases (though no such cases are known) if you
partially upgrade your trees. There is a lot to keep track of when upgrading your trees. You are much better
off letting abuild do it for you. Documentation on the upgrade process, for the time being, can be found in
src/manual/pending.txt.

1.1.a4: March 19, 2009

• Deprecated Features

• No features have been deprecated in this release.

• Documentation Changes

• Documentation for the Groovy framework has been moved to src/manual/groovy-framework.txt pending full
inclusion in the manual.

• Java examples that are not specifically illustrating the ant framework have been converted to use the Groovy
framework. The rest have been moved into an ant-specific portion of the test suite. The text remains in the
manual, but the files are no longer included. Prior to the release of version 1.1, new examples to illustrate
the Groovy framework will be introduced, ant the ant framework will be mentioned briefly in an appendix.

• Core Functionality Changes

• Support --compat-level=x.y. When specified, backward compatibility support is disabled for features that
were deprecated at or before version x.y.

• Abuild now prints the total clock time that elapsed during a build right before it exits. The time is printed
in the form HH:MM:SS.

• In preparation for deprecation of parent-dir, the value of parent-dir is required to point up in the file system,
and all values of child-dirs are required to point down. Additionally, if either parent-dir or child-dirs reach
more than one directory away, no Abuild.conf files are permitted in intervening directories.

These changes, along with the existing check that an item's child's parent point back to the item, are sufficient
to enable abuild to safely ignore the value of the parent-dir key.

• As an intermediate step toward adoption of the new traversal system, we now walk up the tree looking for
an item that doesn't have us as its child when finding the top of the forest. The old behavior was to follow
parent-dir, which is now ignored.

1.1.a3: March 16, 2009

• Deprecated Features

• No features have been deprecated in this release.

• Changes to Groovy Framework

• Some default path names have changed. See rules/java/_base.groovy for details. This will likely continue to
change until the main java rules have been nailed down.

Release Notes

238

• Targets have been added for copying and signing JARs, and for creating RARs, WARs, and EARs. The
RAR target happens after copying and signing of jars. There's nothing RAR-specific about it. It could be
generalized to create any kind of JAR that could contain other JARs.

• Support for JUnit-based tests have been added to the built-in java rules.

• Calls to abuild.appendParameter will pre-initialize the parameter with the result of calling resolve on it. This
means that attempting to append to an interface variable will effectively copy the interface variable to a
parameter and then append it.

• Variable-like constructs on the right-hand side of an assignment or left shift inside of parameters call are no
longer automatically resolved as parameters. You now must use resolve explicitly. This is to reduce confusion
that could step from the fact that you always had to do this for some cases, and that using a parameter in
a context where it is not magically resolved would result in having a ParameterHelper object, which is
not useful in itself. This is a case of removing a little bit of convenience in a common case to avoid creating
a very obscure error in a less common case. Although having to explicitly resolve variables on the right
hand side of assignments is not “normal” in a programming language environment, it is similar to variable
assignment in a properties file, shell script, make file, or even abuild interface file, which makes it consistent
with the rest of abuild.

• Core Functionality Changes

• It is now possible to declare local variables in an interface file. Local variables are visible to the backend
of the build item to which they belong, and their scope extends from the main Abuild.interface file to any
after-build files, but nothing about them, including their declarations, is exported to depending build items.
This means that local variables with the same names may be used in multiple build items' interface files.
Declare local variables using the syntax

declare variable local type[= initialization]

1.1.a2: March 11, 2009

• Deprecated Features

• The following features, each of which is discussed elsewhere in these relates notes, have been deprecated
in this version:

• LINK_SHLIBS. No functionality changes have been introduced relative to version 1.0.3, but using
LINK_SHLIBS now results in a deprecation warning.

The following feature was listed as deprecated in 1.1.a1 but is no longer deprecated:

• The abuild.hook-build-items is no longer deprecated since the -with-rules flag for dependencies as been
removed in favor of a different solution that can't be applied to the ant backend.

• Changes to Groovy Framework

• The java rules have been completely rewritten.

• The src/TODO file remains the primary location of documentation of the Groovy framework while it is still
in flux, so these notes contain only a very brief summary of changes.

• An improved syntax has been provided for setting parameters. This takes advantage of Groovy's meta-pro-
gramming capabilities to allow a closure passed to the parameters method to contain parameter settings that
look like normal variable assignments.

Release Notes

239

• Parameter names have been changed to use camelCaps instead of dashed-components to make the syntax
more natural when setting parameters from a closure.

• All getVariable methods have been replaced with calls to methods whose name start with resolve.

• There is now a replaceClosures method that allows closures for a target to be replaced rather than appended
to. This practice should generally be avoided, and seldom be necessary based on the way the default rule
implementations work. (You can already provide your own closures to run instead of the default ones.)

• Changes to ant framework

• Note: this change was removed in a subsequent release. This change was actually introduced in version
1.1.a1. Abuild now complains if the ant-hooks.xml file for a hook build item does not exist.

• Changes to make Framework

• Note: this change was reverted in a subsequent release. The order in which files are loaded by the GNU Make
backend has been changed slightly. plugin.mk files and the base rules (which load the compiler toolchain
support files) are now loaded before Abuild.mk. This makes it possible for Abuild.mk files to modify variables
set in those places and also provides a mechanism for plugins and built-in rules to supply default values for
parameters that can be referenced from Abuild.mk.

• Core Functionality Changes

• The -with-rules option to the deps key in Abuild.conf, introduced in 1.1.a1, has been removed. It didn't turn
out to be a very good idea. Instead, a new, unified method for build items to provide rules has been added.
All build items, not just plugins, provide rules by creating a rules directory and putting a named rules file
in a subdirectory named after the target type. In addition, a subdirectory named all may be used to provide
rules that are valid for all target types.

As a result of this change, all uses of BUILD_ITEM_RULES and of Rules.mk are now deprecated. Addition-
ally, since there is no facility to provide loading of named rules in the ant framework, use of abuild.hook-
build-items is no longer deprecated (except in as much as the entire ant framework is deprecated).

When build items want to use rules provided by another build item, they just place the name of the rules
(without the .mk or .groovy suffix in RULES or abuild.rules just as they would for plugin or built-in rules.

As part of this change, the make/rules and groovy/rules directories have been merged and placed in rules
at the top of the abuild distribution. Additionally, the empty rule sets for both Groovy and make have been
moved into the rules/all directory.

• The interface system now supports non-recursive variables. A variable can be declared non-recursive by
putting the keyword non-recursive in the declaration after the variable name and before the type.

When an interface variable is declared as non-recursive, only assignments from the item itself and its directly
declared dependencies are effective. Specifically, when importing an interface, only assignments from the
item that owns the interface imported. Since abuild imports interfaces of its direct dependencies, this causes
the behavior of seeing only assignments in direct dependencies and in the item. To avoid seeing assignments
from the item itself, place those assignments in an after-build file.

Non-recursive variables can be useful for carrying information for subsystems that handle recursive depen-
dencies on their own. Examples could include manifest classpaths or shared library information.

• It is now possible to initialize an interface variable at the time of declaration using the shorthand syntax

Release Notes

240

declare variable type = initialization

1.1.a1: February 20, 2009

• Deprecated Features

• Some features have been deprecated. Deprecated features always result in a warning. You can pass the --
deprecation-is-error to abuild to cause it to treat use deprecated features as an error instead.

The following features, each of which is discussed elsewhere in these relates notes, have been deprecated
in this version:

• BUILD_ITEM_RULES

• abuild.hook-build-items (Note: removed from deprecated list in a subsequent release)

• abuild.use-local-hooks

• Major Enhancements

• A new Groovy-based backend has been added. Although, like all backends, it could be used to build build
items of any target type, it is primarily intended as a replacement for the Apache Ant backend. This first
alpha release of 1.1 includes a rudimentary collection of rules for building Java and Groovy code currently
called java_proto. These rules may change in non-compatible ways throughout the 1.1 alpha testing period.
The Groovy backend is invoked through Java APIs. A single instance of the Java Virtual Machine is shared
for all Groovy-based builds.

For now, documentation on the interface to the Groovy framework can be found in src/TODO in the abuild
distribution. It will be moved into the manual as it is stabilized.

• The same JVM that is used to run Groovy-based builds is now also used to invoke ant-based builds. As such,
abuild runs all ant builds from a single JVM and no longer invokes ant from the command line. This can
result in a noticeable performance improvement.

• Licensing Changes

• Abuild itself remains under the terms of Version 2 of the Artistic license. Abuild now also embeds the
embeddable JAR from the Groovy distribution. Groovy is distributed under the terms of the Apache License.
A NOTICE.txt file has been included in abuild's source distribution in accordance with that license.

• Changes to command-line syntax

• The --deprecation-is-error option has been added. When specified, deprecation is considered an error rather
than a warning.

• Note: a limited version of --ant was added back in a subsequent release. The --ant and --no-abuild-logger
options are no longer supported since abuild now invokes ant through Java APIs.

• Abuild now recognizes arguments of the form variable=value as variable definitions. Any such variable
definitions are automatically passed to all backends. This, rather than using --make or --ant is now the
recommended way of overriding variables. Any variables defined in this way are made available to the ant
backend and to the ant project in the Groovy backend as properties, and to the GNU Make backend as
variables passed on the command line. They are also passed to the Groovy backend in a manner that causes
them to override variable values that are set in other ways, as long as the documented interfaces are used
for getting and setting variables.

Release Notes

241

• The --just-print, --dry-run, and --recon options are no longer synonyms for -n. These are accepted as
synonyms by GNU Make, which is why they were originally supported by abuild as well.

• Core Functionality Changes

• Note: this change was reverted in a subsequent release, and a different solution was implemented in its
place. When declaring dependencies, a new flag -with-rules may be specified. This causes the build item
to load Rules.mk (make), ant-hooks.xml (ant), or Rules.groovy (Groovy). This replaces the now deprecat-
ed BUILD_ITEM_RULES make variable and abuild.hook-build-items ant property. This change means that
there is now a unified mechanism for forcing build item-supplied rules to be run rather than having a separate
mechanism for each backend. In some rare cases, it may be that a build file only has item-based rules. In this
case, you will have to create an empty build file (or one containing only comments) so that abuild will still
know which backend to use for building the item.

Since you can't declare a dependency on yourself, if you wish to use your own rules, you can specify Rules.mk
in LOCAL_RULES (make) or ant-hooks.xml in abuild.local-buildfile (ant).

• When traversing a build tree with a backing area, abuild now accepts non-existent child directories without
requiring a corresponding directory to exist in the backing area. This check served no useful purpose, and it
was removed in preparation for the upcoming revamping of how backing areas work.

• The -n is now supported for all the backends, not just make. For the ant and Groovy backends, abuild doesn't
actually invoke the backend but instead just prints some information on what targets would be run.

• Considerable additional information is output when abuild is run with --verbose. In particular, there is much
more information about how abuild starts up and invokes backends. This should make it easier to solve certain
types of configuration problems, such as abuild picking the wrong version of make.

• Although abuild still does not require JAVA_HOME or ANT_HOME to be set, it will start up slightly faster
if they are set. The reason for this is that abuild actually invokes java and ant to more reliably infer values
for JAVA_HOME and ANT_HOME if they are not already set.

• Build item names are no longer permitted to start with the “-” character.

• Changes to ant framework

• Note: this change was reverted in a subsequent release. All files from which hooks may be loaded, including
hook build items' ant-hooks.xml files, plugins' plugin-ant.xml files, and any file specified as abuild.local-
buildfile are now imported. Before, plugin and build item-supplied files were used only for loading hooks.
This means that it is possible to add new targets in plugins and hook build items. Some caveats are described
in the documentation for this feature. Most notably, when multiple instances of a new target are imported,
only one will actually be used. The recommended practice is for newly defined targets to do nothing other
than call run-hooks to run a hook of the same name.

• The property abuild.use-local-hooks is no longer used. Instead, the ant backend always behaves as if it were
set, meaning that it always uses the local build file for hooks. People were in the habit of setting the now
deprecated abuild.hook-build-items to contain the current build item and writing hooks that apply only to the
local build item. This functionality is intended to be offered by local build files, and that mechanism should
be used instead. If you have a build item that offers hooks for others and also wants to use them for itself, it
can set abuild.local-buildfile to ant-hooks.xml or import ant-hooks.xml from its existing local build file.

• Note: this change was reverted in a subsequent release. Abuild now loads the groovy ant task. Parts of the
abuild ant framework use this task to embed Groovy code. It is recommended that you switch to the groovy
backend rather than using this task, but embedding Groovy code in your ant files may help with a transition
to the new backend.

Release Notes

242

• Since abuild no longer invokes ant from the command line, the --ant option has been removed. Note: a
limited version of --ant was added back in a subsequent release. As such, it is no longer possible to pass
arbitrary flags to ant. The most common use of this was to pass -Dprop-value options to ant. This can now
be accomplished through abuild's new VAR=value argument syntax as described above. Certain things that
used to be possible before, such as running abuild --ant -p, are no longer supported. A future 1.1 alpha
version of abuild will introduce a new help system, so this feature should hopefully not be missed.

• Since abuild now uses its own ant launcher to start ant-based builds using the ant Java API, the old problem of
ant.bat not properly reporting failures on Windows is no longer relevant. This means that ant-based failures
are now properly detected on Windows.

• The --no-abuild-logger is no longer supported. Abuild now always uses the abuild logger when running ant.

• Building Abuild

• Abuild has already required Java 1.5 since its own Java code uses generics. This requirement is made more
firm now since abuild's own Java code now also makes use of some thread pool functionality that was added
in version 1.5.

• Abuild now requires boost version 1.35 or greater since it uses the asio (Asynchronous I/O) library to com-
municate with its Java build launcher.

• When bootstrapping abuild, you must now run the BootstrapJava.groovy script in abuild's src directory to
build the Java code. A full Groovy installation (>= 1.5.7) is needed to build abuild from scratch. A Groovy
installation is not required run abuild as abuild embeds Groovy.

• Usability Improvements

• Starting in 1.0.3, if any build failures occur in a given abuild run, abuild issues an error message indicating
this at the end of its output. Now this error message is followed by a list of which build items failed on
which platforms.

1.0.3: January 9, 2009

• NON-COMPATIBLE CHANGE: removal of LINK_SHLIBS

• Although care is taken to avoid introducing non-compatible changes within a minor release, it was necessary
to change how shared libraries are linked as the old behavior caused too many problems. Specifically, prior to
abuild 1.0.3, shared libraries were not linked unless the LINK_SHLIBS variable was set. Starting with version
1.0.3, this variable has been removed, and builds are conducted as if the variable were set: shared libraries are
always linked. This is almost always the correct behavior for systems that support linking of shared libraries.
Without this, it is very easy to end up in a situation where replacing one version of a shared library with
another one results in undefined or multiply-defined symbols at runtime. One possible consequence of this
change is that, in some cases involving mixing of shared and static libraries, a single shared library may be
linked into multiple shared libraries. This is usually (but not always) harmless, but it is also usually wasteful.
If you encounter this situation, the best option would be to rework your build to avoid whatever arrangement
is causing this. Alternatively, you can manipulate the value of the LIBS variable in your shared library build
item's Abuild.mk file. The old behavior was based on an incomplete analysis of usage of shared libraries. It
optimized for the unusual case of mixing shared libraries with static libraries rather than the more normal
case of being able to replace earlier versions of shared libraries with later versions that may have different
dependencies.

• Enhancements

• A new command line option, --clean-platforms, can be used to restrict which platforms' directories are
removed by any abuild clean operation.

Release Notes

243

• A new key, build-also, is now supported in Abuild.conf. This key's value is a space-separated list of build
items that should be automatically built if the original build item is added to a build set. No dependency
relationship is implied. This provides a more robust method than dependencies of creating virtual “top-level”
build items. A corresponding element has been added to the dump data output as well.

• When --clean is used to clean a build set, abuild now attempts to clean all build items, not just items with
build files. This means abuild will attempt to clean interface-only items, plugins, and other items that it
previously would not have attempted to clean.

• A new option, --dump-interfaces, has been added. Using this option during a build causes abuild to write
an XML dump file of the full state of the interface system for every writable build item. For details, see
Section 17.6, “Debugging Interface Issues”, page 94.

• Build sets down and descending have been added as aliases for desc.

• Behavior of the special platform selector skip has improved. Rather than unconditionally disabling builds
of the given platform type, it just prevents them from being selected by default. Builds for a platform type
for which skip has been specified may now be done in order to satisfy a platform-specific dependency.

• The skip platform selector may now be used for platform types indep and java. When java:skip or
indep:skip is specified as a platform selector, no builds for the given platform type will be performed
unless needed to satisfy a dependency.

• When expanding the build set with --related-by-traits, abuild now repeats the expansion until no more items
are added.

• Bug Fixes

• A failing qtest test suite when invoked from ant now properly causes the build of that item with the check
or test targets to fail.

• If a build item has instances of another build item in its dependency chain for more than one platform, abuild
previously ignored all but the first instance of the second item's interface. (Recall that abuild creates a separate
instance of each item's interface for every platform on which that item builds.) Abuild now properly treats
each instance of the interface separately for purposes of importing interfaces into a dependent item's build.
This bug could only be exercised by creating multiple build items that depend on a common build item using
different platform-specific dependencies.

• Usability Improvements

• If any build failures occur in a given abuild run, abuild now issues an error message indicating this at the
end of its output just before exiting. This makes it easier to recognize a failed build by looking at the end of
abuild's output. This is especially helpful when for parallel builds or builds with -k since, in those cases, the
output of the failed builds may not be at the end of the output.

• Abuild is clearer about reporting when a build item fails. Additionally, if a build failure of one item causes
other items to be skipped, this is now reported as well.

• Internal Changes

• A minor change was made to make it easier for users to create plugins that would enable use of GNU Make
to build Java code. This could make it easier to create prototypes of different back-end build approaches for
Java without having to modify abuild's internals.

Release Notes

244

1.0.2: October 7, 2008

• Abuild no longer includes the minor release of Red Hat Enterprise Linux and Centos releases in the platform
string. The minor release number is not necessary as the minor releases are intended to be binary compatible.
This allows a Red Hat Enterprise Linux 5.2 system to use a backing area built by a Red Hat Enterprise Linux
5.1 system, for example.

• Minor fixes were made to C++ source files in the test suite and examples so that they would compile properly
with gcc 4.3.

• In some cases, shared libraries would be linked with the C++ compiler even when LINK_AS_C was set. This
has been corrected.

• Setting OFLAGS, DFLAGS, and WFLAGS in Abuild.mk files had no effect because of the way these variables
were assigned in toolchain support files. Abuild's built-in toolchains have been fixed to initialize these with ?
= instead of =. This should make it possible to override these variables globally at least for abuild's built-in
toolchains. Overriding these variables globally is generally not a good idea in any case, however. Thanks to
Ben Muzal for reporting the problem.

1.0.1: May 28, 2008

• Minor updates to test suite to make it more portable. In particular, abuild's test suite is now known to pass on
Solaris 8.

• Internal code change: avoid using boost regular expression objects across multiple threads in hopes of solving
occasional assertion failures inside the boost library when running with multiple threads under Windows.

• Abuild was previously passing a JAR file rather than a directory to ant's -lib argument. This has been corrected.
(Thanks for the problem report from Craig Pell.)

• If AUTOCONFIGH is not set, abuild's autoconf rules will not run autoheader. This makes it possible to create
an autoconf build item without generating a header file if desired.

• When autoconf invokes the compiler, it now honors any flags or includes set by dependencies. (Thanks for the
problem report from Joe Davidson.)

• Include two small patches to make abuild build properly in MacOS Darwin. (Thanks for the patches from Joe
Davidson.)

• With --verbose, abuild now prints the backend command that is invoking. (Thanks for the suggestion from
Craig Pell.)

• Documentation updated to add autoconf, automake, and GNU diffutils, and gcc configured with gnu ld to the
list of system requirements.

• Abuild now mentions when nothing is built but some native build items were skipped due to lack of available
platforms. Hopefully this will reduce confusion when Windows users without any valid compilers or cygwin
perl type abuild and don't get any output. Also, when --verbose is specified, abuild always mentions when it
skips any build item because of lack of build platforms.

• Bug fix: if tree A contained a plugin but did not use it, tree B had A as an external and used the plugin, and tree
C had A and B in that order as externals and did not use the plugin, C would have not realize that the plugin
was a plugin in any tree. This would cause a segmentation fault when loading the interface. This problem has
been corrected because abuild now has a more robust way of keeping track of whether a given build item is
ever a plugin.

Release Notes

245

• Enhancement: When the abuild.main-class property is set in Abuild.properties, abuild now sets the Main-Class
attribute in the JAR file's manifest. This doesn't solve the problem of adding custom attributes to manifest
files in the general case, but it does address the most common situation. Thanks to Craig Pell for providing
an implementation.

• When building with Visual C++, embed the manifest file, if any, into the executable or dll file. Thanks to Matt
Nassr for the suggestion and pointer to the relevant information.

• Temporary change: for abuild version 1.0.1, the environment variable ABUILD_FORCE_32BIT may be set to
the value 1 to force abuild to generate 32-bit code on 64-bit platforms under certain conditions. Specifically,
on a ppc64 platform, abuild will pass -m32 to gcc and will use ppc as the CPU type in the platform string.
Likewise, on an x86_64 platform, abuild will pass -m32 to gcc and will use ix86 as the CPU type in the
platform string. Note that abuild will not otherwise override the type of object file generated by your compiler
based on the platform string. This means if you are building on a 64-bit system with a compiler that generates
32-bit object files, abuild will happily create 32-bit object files in a directory whose name suggests 64-bit code.
(This is the case on Red Hat's ppc64 distribution at least with Red Hat Enterprise Linux 4 and 5.) This change
is temporary and may be removed in a future release in favor of a more robust solution for generating both 32-
bit code and 64-bit code on 64-bit systems.

1.0: February 12, 2008

• WARNING ABOUT Java SUPPORT: Java support is considered alpha at the time of release of abuild
version 1.0. This means the Java support in abuild version 1.1 may not be compatible with the Java support in
abuild version 1.0. We are in the process of rethinking how abuild should support Java, and it is possible that
a wholesale redesign of abuild's Java support will be forthcoming.

• Changes from earlier versions

• Added --no-dep-failures option. When used with -k, tells abuild to attempt to build items even when their
dependencies have failed.

• Bug fix: a failing JUnit test suite run now causes the build item to fail.

• Added test-only target to test a build item without depending on all.

• Documentation update: clarify that XLINKFLAGS should not be used for libraries. The documentation still
reflected an earlier idea of what this variable should be used for.

1.0.rc1: December 3, 2007

• Hitting CTRL-C in Windows while abuild was running ant would sometimes leave the console window in an
unusable state as ant, a batch file, tried to ask the user whether to terminate the batch job. On Windows, abuild
now waits for subsidiary processes to exit before exiting itself.

• Trailing whitespace is now trimmed around abuild.hook-build-items in Abuild-ant.properties.

• New command line option --find-conf directs abuild to find the first Abuild.conf at or above the current directory
and to run the build from there.

• Enhance handling of absolute externals so that an absolute external directory may be a symbolic link.

• Many additional improvements have been made to the documentation, thanks to input from reviewers men-
tioned in Acknowledgments, page xii.

• The HTML version of this complete document in the binary distributions is now in doc/html/abuild-manual.html
instead of doc/abuild-manual.html. A multi-file version of the HTML documentation is now also generated.
Its entry point is doc/html/index.html.

Release Notes

246

1.0.b3: November 13, 2007

• Support has been added for read only externals and for specifying a separate path for an external that is used
only on Windows.

• If a WHOLE_lib_libname variable is set during a build using the msvc compiler, an error message will be
generated. Previously, the whole library instruction would be silently ignored.

• Numerous improvements have been made to the documentation, thanks to input from reviewers mentioned in
Acknowledgments, page xii.

1.0.b2: November 2, 2007

• Removal of Deprecated Functionality

• Abuild no longer automatically removes stray automatically generated files created by versions older than
1.0.a14.

• Abuild no longer accepts BI_RULES as a synonym for BUILD_ITEM_RULES.

• Movement of Functionality to External Plugins

• VxWorks and XLC support have been removed from abuild and are now available as plugins in a build tree
maintained separately from abuild.

• Javadoc support is no longer provided by the default ant rules but is instead provided by a doc hook, which
is provided separately.

• New Features

• External trees may now be specified as absolute paths. This makes it easier to support external trees that
contain things like libraries of build items that may be maintained separately from the projects that use them.

• The -C directory option to the abuild command tells abuild to change directories to the given directory
before doing anything. Similar to make's -C option.

• The -lowpri option to platform and native-compiler commands output from list_platforms scripts may
now be specified when adding new platforms and native compilers from plugins.

• Abuild interface variable ABUILD_PLATFORM_TYPE is now defined.

• A program is now provided to verify proper operation of compiler plugins. (See Section 29.4, “Adding
Toolchains”, page 188.)

• C/C++ rules will, in most cases, recognize orphan targets are deal with them properly. (Stray object files in
subdirectories of the output directory will not currently be detected.)

• The new make variable LINKWRAPPER can be set on the command line or in the Abuild.mk file to specify
the name of a command to wrap the link step. This is intended to be used to support tools such as Purify
which wrap the link command in this fashion.

• The new variable LINK_AS_C may be set in an Abuild.mk file to cause all shared libraries and executables
in that build item to be linked as straight C code instead of C++ code. This avoids a dependency on the C
++ runtime libraries for straight C code.

• A new example has been created to illustrate how to pass information safely from a make variable to your
source code. See Section 22.5, “Dependency on a Make Variable”, page 142.

Release Notes

247

• Functionality Changes

• The -ansi flag is no longer passed to g++ by default for the gcc and mingw compilers. If you want it, create
a plugin that adds it to XCXXFLAGS (or XCFLAGS) in plugin.mk conditionally upon the compiler. In older
versions, -ansi was passed to g++ but not gcc.

• The doc target for Java builds no longer runs javadoc. Instead, this capability must be provided by a plugin.
The reason for this change is that there is too much site-specific policy in how the javadoc task would be
invoked. In light of this, the pre-doc and post-doc hooks have been replaced by a doc hook.

• A few error messages have been cleaned up so that, whenever possible, all abuild error messages are of a form
that is parseable by the error-handling code in Emacs and Eclipse. (Most error messages already conformed,
but a small number did not.)

• Bug Fixes

• The autoconf rules have been fixed so that they do not generate warnings about undefined variables and work
better by default for cross compiles.

• File-specific OFLAGS, DFLAGS, and WFLAGS variables now work properly when set to the empty string.

• On Windows, abuild no longer attempts to run perl if Cygwin perl is not the first perl in the path. In verbose
mode, a message to this effect is printed when perl is not found.

1.0.b1: September 28, 2007

• Warnings About Next Release

• Note: This is intended to be the last release to include VxWorks and xlc support inside of abuild. Abuild's
VxWorks and xlc support code should be moved into plugins prior to the next beta release of abuild.

• Documentation Changes

• The documentation has been substantially reorganized. Many new sections have been added, and many parts
have been rewritten.

• Examples are now spread throughout the documentation rather than being grouped together in one section.
(See Appendix L, List of Examples, page 337 for a convenient list of examples.) The contents of files
referenced from the examples are now included inline in the text. The contents of every file in the doc/
example directory are no longer included in the document.

• The documentation has been converted from Texinfo to docbook.

• The documentation in the binary distribution is now installed as doc/abuild-manual.pdf and doc/abuild-
manual.html. There is also now a cascading stylesheet called doc/stylesheet.css that has to be in the same
directory as the HTML version of the documentation.

• VxWorks Changes

• Shared library and partial load script support has been added to vxworks. When building an executable,
abuild generates binname.loaddata which is an executable shell script that copies all files that need to be
loaded to a given directory in sequential order.

• Basic Functionality Changes

• Subtle changes have been made to how abuild picks which targets to apply to which build items: explicit tar-
gets are no longer applied to build items being built just to satisfy dependencies unless the new --apply-tar-
gets-to-deps option is specified.

Release Notes

248

• New name and pattern based build sets have been added. See Section 9.2, “Build Sets”, page 39 for details.

• --with-deps is now exactly the same as --build=current. Both behave the way --with-deps behaved in pre-
vious releases. To get the old behavior of --build=current, also specify the --apply-targets-to-deps option.

• When cleaning with a clean set, dependencies of items in the clean set are no longer cleaned by default. To
cause them to be cleaned as well, use the --apply-targets-to-deps option along with --clean.

• The --verbose option now prints additional information about what abuild is doing in addition to passing
verbose flags to make and ant.

• The --silent flag now passes -quiet to ant in addition to suppressing some make output and some of abuild's
own output.

• Build item scoping rules have changed slightly: a build item no longer has automatic access to items in
grandchild scopes or lower (A can still see A.B, but it can no longer see A.B.C). Access can still be granted
using the visible-to key if needed.

• Bug fix: if --dump-data and --monitored were both specified, the dump data output is now properly delim-
ited by monitor statements.

• Ant/Java changes

• The ANT_HOME and JAVA_HOME environment variables are no longer required. If ANT_HOME is set,
abuild will still run the copy of ant in ${ANT_HOME}/bin, but if it is not set, abuild will now attempt to run
ant from the path. This makes abuild completely free of mandatory environment variable settings.

• The ability to generate wrapper scripts to run Java “executables” has been moved into the standard ant support
for abuild. The old Java wrapper example has been changed to use this functionality instead of implementing
it with a special build item.

• The new property abuild.include-ant-runtime has been added to include ant's runtime libraries in your com-
pilation class path. This removes the need to access ANT_HOME (and therefore require it to be set) when
compiling custom ant tasks.

• Boolean Abuild.interface variables are now converted to “1” and “0” for ant-based builds just as they are
for make-based builds. Earlier versions of abuild used “1” and “0” for make-based builds and “yes” and
“no” for ant-based builds.

• Make/C/C++ Changes

• Abuild now supports the creation of shared library files on UNIX platforms and DLL files on Windows
platforms. It also compiles all library files as position-independent code. Users wishing to take advantage of
this new functionality are recommended to rebuild from a clean state.

• It is now possible to generate the preprocessed version of any C or C++ source file by running abuild
SourceFile.i.

• The old dummy make rules, never previously documented, have been renamed to empty and are now docu-
mented and officially supported.

• The texinfo rules have been removed.

1.0.a20: September 4, 2007

• Configuration changes

Release Notes

249

• Writable backing areas are no longer supported; all backing areas are read only. The Abuild.backing file now
contains only the path name of the backing area.

• Added new deleted key to Abuild.conf, making it possible to make build items in a backing area that are not
present in the local tree inaccessible.

• Invocation changes

• Platform selection criteria are now supported via the --platform-selector or -p command-line option and the
ABUILD_PLATFORM_SELECTORS environment variable. This makes it possible to more tightly control
which platforms will be built. Along with this, the option field, formerly known as the flags field, of object
code platforms is implemented along with a recommended method for generating release and debug builds.

• The all build set no longer ever builds items in backing areas since all backing areas are now read only. The
local build set no longer builds externals. If you wish to build the local tree and its externals as well, use the
all build set. This makes the local build set do what people always thought it did anyway.

• The --list-platforms command-line argument lists all known object-code platforms grouped by platform
type.

• The command abuild --dump-data will now attempt to generate dump data output even when there were
errors. This makes it possible to use the dump data output to help figure out what may be causing the errors.
The errors attribute will be present and have the value 1 when errors have been detected.

• Added --monitored flag to put abuild into monitored mode. This is primarily intended to support front-ends
to abuild that want to monitor progress. For information, see Chapter 31, Monitored Mode, page 212.

• Abuild's choice of backend is no longer determined by the target type of the build item but is instead deter-
mined by the type of build file it has. This change is invisible to users of older versions of abuild as it will
always do the same thing for any existing configurations. It does, in principle, make it possible to use ant
for C/C++ builds and make for Java-based builds, provided the proper support code was added, and it also
opens the door for supporting a wider array of backends.

• In many error messages, relative paths to Abuild.conf files have been replaced with absolute paths.

• Make changes

• The BI_RULES variable has been renamed to BUILD_ITEM_RULES. A deprecation warning will be issued
if BI_RULES is used. This backward compatibility will be removed before 1.0.

• New documented flags have been added to ccxx.mk. These changes are mostly user-invisible, but end user
Abuild.mk files that set the DFLAGS make variable will need to be changed.

• Previously undocumented toolchain-specific make flags variables have been removed in favor of using con-
ditionals based on $(CCXX_TOOLCHAIN).

• ccxx.mk has been reworked somewhat to make it easier to write new compiler support files and to simplify
overriding of debug, optimization, and warning flags. These changes are invisible to the vast majority of end-
user Abuild.mk files but have a significant impact on toolchain support files, which prior to this release, were
all included in abuild anyway. The ccxx.mk file itself is heavily commented.

• Java changes

• An alternative for Java builds has been provided. In this alternative, you can write your own build.xml files
with some minor limitations.

Release Notes

250

• Non-compatible change: there is now only one java platform, java. The interface variable
abuild.platform.bytecode is no longer defined. Abuild no longer attempts to manage different java byte-
code versions itself. However, two new properties: abuild.source-java-version and abuild.target-java-ver-
sion can now be set in Abuild-ant.properties. This change is invisible to people who did not either access the
abuild.platform.bytecode variable or the abuild-java5 path.

• Bug fix: abuild will now work properly if $(ANT_HOME) points to a path with a space it in.

• Platform changes

• There is no longer support for nested platform types. All the operating system-specific platform types (unix,
windows, etc.) have been removed. This is not a user-visible change since there were never any platforms in
those platform types. Note that new platforms and platform types may now be added in plugins.

• Abuild's internal list_platforms command has moved from private/bin to private and generates new kinds
of output. Abuild's own bootstrapping uses private/bin/bootstrap_native_platform.

• Full cross-platform dependency support is fully implemented. It is now possible to mention a platform type
and platform selection criteria on a dependency declaration using the -platform option in the deps key in
Abuild.conf.

• The USE_MSVC environment variable is no longer required for using Visual C/C++. Instead, abuild will
try to use it if the VCINSTALLDIR variable is set. Based on Microsoft documentation, this appears to be a
reliable test that the appropriate Visual Studio variables are in the environment.

• --dump-data changes

• Since writable backing areas are no longer supported, there is no longer a writable attribute to the back-
ing-area element.

• The platform-data element has been added. This gives overall platform information as well as build-tree-
specific platform information.

• The deleted-items element has been added to build-tree.

• Several attributes and elements have been added because of plugin support. In particular, the is-plugin and
is-plugin-anywhere attributes have been added to build-item, the has-shadowed-dependencies attribute has
been changed to has-shadowed-references and is also true if plugins are shadowed, and the new plugins
element has been added.

• The new attribute external-depth has been added to build-item. Items local to the build tree from which abuild
was started are now detectable by having both external-depth and backing-depth equal to 0. (They can, as
before, also be detected by having their home tree be the current build tree.)

• With full cross-platform dependencies supported, the dependency element now has an optional platform-type
attribute.

• The build-platforms and known-platforms attributes have been removed from build-item, and the build-
able-platforms attribute has been added.

1.0.a19: July 31, 2007

• Java changes

Release Notes

251

• Non-compatible change: Previously undocumented ear-contents and war-classpath directories are no longer
used. New documented classpath directory has been introduced for use in copying classpath files into
archives. This mechanism may change in the future.

• Non-compatible change: It is no longer possible to create a local JAR file in the same build item as an EAR
file. The EAR example in the Java Archive Types example has been updated to illustrate a different way
to do this.

• Non-compatible change: For WAR build items, the property abuild.war-type must now be set to either client
or server.

• It is now possible to add arbitrary files to an EAR file and to populate an EAR file's META-INF directory.

• New functionality

• The new --print-abuild-top flag has been added to print the name of the abuild's installation directory.

• Non-compatible change: the autofiles statement in Abuild.interface has been changed to after-build to more
accurately reflect its purpose and functionality.

• Interface flags are now supported. Build items can declare supported flags in their Abuild.conf files and can
reference those flags in their Abuild.interface files. They can also specify which flags should be set for other
build items in their direct dependency list.

• Non-compatible change: in light of the introduction of interface flags, BI_PRIVATE and Private.mk are no
longer supported. The private interface example illustrates how to support this construct in a cleaner way
using interface flags.

• Build item traits are now supported. This allows build items to be grouped based on functionality or relation-
ships to other build items that fall outside of the dependency graph.

• Several examples in the documentation have been updated to demonstrate new functionality. Some new
examples have also been added.

• It is now possible to reset a variable in Abuild.interface using the reset, reset-all, and no-reset statements.
Please see the relevant sections of the document to understand how these work and the subtleties of their use.

• Externals that are resolved through backing areas now appear in the --dump-data output with the backed="1"
attribute. Before, they did not appear at all.

• Information about traits and flags have been added to --dump-data output.

• All whitespace-separated lists have been removed from --dump-data output and have been replaced by
nested elements instead. This made room for inclusion of flag and trait information in the dump data output
and also makes it easier for applications to parse the XML.

• Bug fixes

• Incorrect regular expression could cause “memory exhausted” to be printed when certain syntax errors ap-
peared in Abuild.conf files.

• Several cases involving whitespace handling were fixed in the interface parser. Specifically, the following
patterns could result in parse errors: trailing whitespace at the end an interface file without a line terminator,
a continuation character in a file with Windows-style newlines, and a continuation character followed by a
line that did not start with a space.

Release Notes

252

• Path comparison on Windows is now case-insensitive when computing one path relative to another. When
asking for one path relative to a path on a different drive, the first path is returned unchanged. This should
make abuild itself able to use backing areas on different drives, though this case has not been thoroughly
tested.

• Short forms of command-line options added in 1.0.a14 have been added to abuild --help's output.

1.0.a18: July 18, 2007

• Run junit tests with fork="true" for better performance.

• Support added for WAR files.

• The src/java directory is now optional. It makes sense to omit it for some WAR files as well as for JAR files
that consist entirely of resources or automatically generated code.

• In order to support a wider range of java archive types, the abuild.jar-name and abuild.ear-name properties in
Abuild-ant.properties must now include the filename extension of the archive file.

1.0.a17: July 9, 2007

• Implemented new build item accessibility scheme that allows nested namespace scopes. To upgrade your build
item names, please run misc/upgrade-scope-names from the abuild installation directory. Two consecutive
dashes (--) no longer has any special meaning in build item names. Abuild also no longer requires the public
parent of a private build item to exist. For details on the new accessibility system, see Section 6.3, “Build Item
Name Scoping”, page 28.

• Added optional visible-to field to the Abuild.conf file to allow build items to expand their visibility as otherwise
restricted by the new scoping rules. This is also an optional attribute to BuildItem in the --dump-data output.

• Added “mixed classification” example to the complete example section. This shows a pattern of how one might
organize build items in a mixed classification environment. It also shows a real-world application of the new
visible-to field in the Abuild.conf file.

• Added an optional description field to Abuild.conf. This is for informational use only. It appears in the --dump-
data output if present.

• Run pre- and post- compile and package hooks in Java even if the compile and package targets are not being
run. This makes it possible to, for example, generate wrappers from post-package hooks even if no packages
are being created. The Java example has been enhanced to illustrate this case.

• Bug fix: autoconf rules have been modified slightly so that they should work properly when --make-jobs is
used.

• Added cygwin as a valid platform type as distinct from Windows. Although abuild should in principle work just
fine if compiled as a cygwin application, this has not been tested and there is no intention of actually supporting
it. However, there's also no good reason to hard-code into abuild the idea that when cygwin is present, it means
Windows, not cygwin.

• Change layout of source directory: manual sources are now in src/manual and dump data DTD is now in the
src directory. The compiled manual in PDF and HTML formats along with the DTD are included in the doc
directory in the binary distribution.

1.0.a16: June 22, 2007

• Abuild no longer has to be in a directory called abuild. Instead, it looks above the full path of the abuild exe-
cutable for a directory that contains make/abuild.mk. This means it's possible to install abuild under a directory
named abuild-version, for example.

Release Notes

253

• The ant package target has been recoded to avoid multiple invocations of the compile target.

• A small error was corrected in abuild_data.dtd. A test case has been added to ensure that it is always accurate
in future releases.

1.0.a15: June 18, 2007

• Basic Java support has been added.

• Add -mlongcall to vxworks compilation

• The documentation has been reorganized somewhat for greater clarity. The contents of the example files have
been moved to an appendix at the back of the document which makes them easier to separate when going
through examples.

• A standard doc target has been added, though it does not yet do anything for make-based target types

• The test and check targets are now identical in functionality. It used to be that test did not depend on all, but
this is no longer the case.

• Abuild now looks in the qtest directory rather than the tests for qtest test suites.

• Environment variables may now appear in interface files using the syntax $(ENV:VARIABLE). Use sparingly.

• When cleaning with a clean set, items that have no build files are skipped.

• The -- argument has been dropped in favor of --make and --ant options which pass arguments specifically to
make or ant. Both options can be specified so that a mixed build can pass different arguments to make and to ant.

• The style of element names used in --dump-data has been changed from ThisStyle to this-style

• There is no longer a default value for the platform-types key in Abuild.conf. The upgrade-interfaces script that
assists with upgrading from pre-1.0.a14 versions of abuild will create values when necessary based on the old
rules.

• Build item names are restricted to containing only alphanumeric characters, underscores, periods, and dashes.

• Added --dump-build-graph debugging option.

1.0.a14: May 18, 2007

• A new XML-based --dump-data format has been implemented.

• Short forms of --build=set, --clean=set, and --with-deps options have been provided. See command line syntax
for details.

• Clean sets are no longer automatically expanded to include recursively expanded dependencies. The deps and
current build/clean sets have been redefined to explicitly include expanded dependencies and therefore have
no change of semantics. The main result of this change is that running --clean=desc now no longer ever cleans
anything not below the directory from which abuild was invoked.

• The option to pass VAR=value arguments to abuild and to have those passed on to make has been removed. If
you need to do this, place these arguments after --, since all those arguments are passed directly to the backend
anyway.

• The documentation was updated to accurately reflect recent changes of platform handling, the new interface
system, and refactoring that was performed during the C++ port.

• Implementation of completely new interface system. Interfaces now use Abuild.interface instead of
Interface.mk. The new interface files are loaded internally by abuild and are no longer tied to GNU Make.

Release Notes

254

• Remove Windows-only XLIBS interface variable. Instead of appending xyz to XLIBS, append xyz.lib to XLINK-
FLAGS. (Note: in a later change, we now recommend using LIBS and LIBDIRS for third-party libraries just
as you would for your own libraries.)

• Bug fix: detect parent/child loops better while reading Abuild.conf files. Parent loops were previously detected
properly, but child loops were not necessarily detected.

• Terminology change: “architecture” is now “platform”, “architecture category” is now “platform type”, and
“architecture class” is now “target type.” The arch key in Abuild.conf is now platform-types. The archclass
key in Abuild.interface is now target-type.

• Changes to platform identifiers: this release includes an early implementation of the new
os.cpu.toolset.compiler[.flags] format.

• The vc7 C/C++ toolchain is now called msvc since it works with Visual C++ version 8 as well as version 7.
The environment variable USE_MSVC, rather than USE_VC7, now selects it.

1.0.a13: May 1, 2007

• Abuild, previously implemented in Perl, was rewritten in C++.

• For compilers that support it, gen_deps is bypassed in favor of the compiler's internal dependency generation
capabilities. This will improve build performance for those compilers. As of 1.0.a13, the only compiler that
produces exactly what abuild needs is gcc.

• The default optimization for gcc and xlc has been changed from -O3 to -O2 as many people have reported
problems with -O3. For most cases, -O3 will not make a big difference in performance, but there are some cases
in which it can be a significant difference. For those cases, it is still possible to override this for individual files
or individual build items if desired.

• Abuild no longer provides the variables abHOST_ARCH, abHOST_OS, abHOST_DIST, or abHOST_CPU as
they did not previously contain reliably useful values and were never documented.

• When looking for GNU Make, abuild now checks all occurrences of gmake and then of make in the path,
stopping with the first one that appears to be GNU Make version 3.81 or newer. It previously checked only the
first occurrence of make or gmake and required that occurrence to be GNU Make 3.81 or newer.

• Abuild now only checks for GNU Make if at least one build item requires it.

• Abuild no longer calls umask 002 before starting to build. This means that it will not create group-writable files
unless the calling user's umask is set appropriately. The old behavior of calling umask 002 was a vestige of the
past when it was common for multiple users to be building in the same directory. Although this may sometimes
still be desirable, it's not the place of abuild to override the user's umask setting.

• Starting in version 1.0.a11, abuild no longer creates .ab-dynamic.mk outside of architecture directories. Versions
1.0.a11 and 1.0.a12 deleted stray .ab-dynamic.mk files created by older versions of abuild. This version no
longer does. If you are upgrading from a version older than 1.0.a11, you should manually remove any .ab-
dynamic.mk files that are left lying around. Since abuild automatically creates those that it needs on each run,
running find . -name .ab-dynamic.mk -exec rm {} \; will do the job.

• The --host-arch command line argument was removed.

1.0.a12: April 2, 2007

• It is now possible to specify that a library should be linked in its entirety by defining the variable
WHOLE_lib_libname for library libname in the Interface.mk file that provides libname. For systems that use

Release Notes

255

the gnu linker, this results in the --whole-archive flag being used for the specified library. Note that not all
systems support this feature, so this behavior should not be relied upon when not absolutely necessary.

1.0.a11: March 30, 2007

• Move XLINKFLAGS to the end of the link step (after LIBS) for all C/C++ compilers.

• The -j flag now controls how many build items abuild will attempt to build in parallel and is no longer passed
to make. The new command-line option --make-jobs can be used to pass the -j flag to make.

• Abuild no longer uses any recursion at all. Rather than having a top-level abuild process invoke subsidiary
abuild processes for specific builds, abuild computes all the directories in which builds will be run and invokes
the backend directly in each directory. Abuild now manages all of its build order computations and parallelism
computations itself rather than relying on GNU Make. This means that abuild now uses GNU Make only for
performing the actual compiles, which greatly simplifies abuild's make code and makes it much more able to
support alternative backends. A pleasant side effect of this change is that abuild runs much more quickly and
no longer needs to cache any information. A version of abuild to appear in the very near future will change the
mechanism through which build items publish their build interfaces, eliminating Interface.mk and replacing it
with some other mechanism.

• Abuild no longer creates .abuild-cache.* directories at all and also no longer creates .ab-dynamic.mk files
outside of architecture subdirectories.

1.0.a10: March 26, 2007

• Various Windows portability fixes including changing cache file names to make them shorter.

• Deprecated debugging flag removed from VC7 toolchain support file.

• Abuild now works when run via a symbolic link. In other words, it now works to add a symlink called abuild
in your path and have it point to the real abuild. If you attempted to do this in prior versions, you would get an
error because abuild would not be able to find its data files.

• The support test framework is now called qtest, and the name of its driver is qtest-driver. Abuild has been
updated with the new name information.

• Bug fix: abuild was previously invoking qtest-driver in a manner such that test coverage files would never been
seen. This is now fixed. (Requires the qtest version >= 1.0.a1 as well.)

1.0.a9: March 14, 2007

• Use $WIND_HOME instead of /opt/WindRiver to find the vxworks toolchain.

1.0.a8: March 13, 2007

• Change the hacked vxworks support to be just a little bit less hacked. Abuild no longer uses the hacked toolchain
on hydra1; it now recognizes the vendor-supplied cross compiler toolchain if installed in /opt/WindRiver, re-
sulting in working C++ support for a Linux Intel to vworks ppc cross compilation. This is still a temporary
solution, but it is closer to the real thing.

1.0.a7: March 7, 2007

• Make a few changes to the temporary vxworks support to allow C++ compilation to succeed.

1.0.a6: March 6, 2007

• Abuild now loads Interface.mk files in forward rather than reverse dependency order. In order to avoid having
to change all the Interface.mk files to ensure that library ordering is still correct, special case code has been

Release Notes

256

added to handle the INCLUDES, LIBS, and LIBDIRS variables. This turned out to be a temporary solution, as
hoped. For a detailed description of this change, please see the 1.0.a6 documentation.

• Abuild now loads the C/C++ toolchain configuration before loading any architecture-specific rules. This means
that the autoconf rules will know the proper C/C++ toolchain even if the ccxx rules are not also loaded.

• Bug fix: some of the XCFLAGS-like variables were not being used at all the right places after the refactoring
of the toolchain support.

1.0.a5: March 5, 2007

• Bug fix: don't include Interface.mk files for build items whose architecture categories don't match what is being
built.

1.0.a4: February 23, 2007

• Change VxWorks support so that library targets build normal .a files and executable targets build .out files that
can link with libraries. This is still not necessarily the final way it's going to work.

1.0.a3: February 20, 2007

• Fix .LIBPATTERNS warning on VxWorks

• Detect when a build set contains no buildable items and exit cleanly without attempting to build.

1.0.a2: February 19, 2007

• The strings as C or as C++ are included in abuild's output when compiling C and C++ respectively.

• Internal make directory has been reorganized. The two changes that affect the documentation are that make/
rules/arch-indep is now make/rules/indep and make/rules/arch-dep is now make/rules/archdep. Other changes
were also made.

• Hacked in support for xlc (IBM compiler) and vxworks. The xlc and vxworks are specific to a particular con-
figuration and will disappear in a future release when a suitable facility is added for extending abuild with
external rules.

• The beginning of multiple architecture support has been implemented. It now works to set arch in Abuild.conf
to native vxworks to build for both the native platform and for VxWorks or to set it to vxworks to build for
VxWorks only. The rest of the documentation has not been updated to reflect this yet.

1.0.a1: February 8, 2007

• Separate specification of private interfaces are now supported through use of the Private.mk file. (This mech-
anism was changed in a later release.)

• Abuild now enforces that BI_RULES in Abuild.mk may not contain inaccessible private build items.

257

Appendix B. Major Changes from
Version 1.0 to Version 1.1
This chapter presents a summary of the major changes to abuild that were introduced in version 1.1. If you are already
familiar with abuild 1.0, this material should help you come up to speed with version 1.1 fairly quickly.

With few exceptions, abuild 1.1 is able to build trees that version 1.0 could build, which should make it possible, in
almost all cases, to operate in a mixed 1.0/1.1 environment during a transitional period. Once you are ready to start
taking full advantage of new functionality in 1.1, it is recommended that you upgrade your trees. Abuild includes a
utility that will do almost all of the work of upgrading your Abuild.conf files. You will have to perform upgrades to
your Abuild.mk files manually, though there are relatively few such upgrades, and most build items will not require any
changes. For details on the upgrade process, please see Appendix C, Upgrading from 1.0 to Version 1.1, page 263.

Warning

Please do not use the list below to try to upgrade your build trees manually. You shouldn't go through this
list and start manually fixing your Abuild.conf files. Doing this will only waste your time and making the
automated upgrade process less reliable. There is a lot of complex logic involved in doing the upgrades, so
you're best off leaving it to abuild which has the benefit of knowing the entire build tree structure of all your
trees. Refer to Appendix C, Upgrading from 1.0 to Version 1.1, page 263 for details.

B.1. Non-compatible Changes
As a general rule, we avoid making non-compatible changes in abuild minor releases. There are some instances,
however, in which supporting the old feature is very difficult or problematic in comparison to fixing existing build trees.
In all cases, there is a solution that provides the desired functionality that will work in a hybrid 1.0/1.1 environment.

• The make backend now loads the toolchain support file before your Abuild.mk file. This will almost never make
a difference, and it allows build items to manipulate or override variables defined by the toolchain. This greatly
simplifies things like selectively overriding warning or optimization flags, and is also used by the new variables
that allow for tighter configuration of the msvc toolchain. It's possible that certain incorrect Abuild.mk code that you
might have gotten away with in the past may cause problems now as a result of this change. This is discussed in
Section C.2, “Potential Upgrade Problems: Things to Watch Out For”, page 264.

• Absolute path externals are no longer supported. Use of the absolute path externals or of the -winpath option in
the external-dirs key will result in an error message. If you are relying on absolute path externals, you can replace
them with relative-path externals, and make the relative path externals be empty except for an Abuild.backing file
that points to the absolute path previously referenced. This provides the exact functionality of the absolute path
external. You will use this only as a temporary workaround, since after you upgrade your trees to version 1.1, you
will no longer have any external-dirs keys.

• Read-only externals are no longer supported. In abuild 1.1, you can force parts of your build tree to be read only by
using the much more flexible --ro-path and --rw-path options, described in Chapter 12, Explicit Read-Only and
Read/Write Paths, page 68. In order to allow hybrid 1.0/1.1 environments to work properly, abuild 1.1 will allow
the -ro option to be specified in your Abuild.conf's external-dirs keyword, but it will issue a warning and ignore
the option. Once you upgrade to version 1.1, you will no longer have any external-dirs keys anyway.

• The value of the parent-dir key must now point up in the file system. That is, if the value has more than one path
element, every path element must be “..”. (So, for example, “../..” is valid.) Once you upgrade your build trees
to abuild 1.1, you will no longer have any parent-dir keys. This check for existing parent-dir keys effectively just
makes sure that whatever abuild 1.1 would now automatically figure out is consistent with you explicitly specified
in your 1.0 trees.

Major Changes from Ver-
sion 1.0 to Version 1.1

258

• Each value of the child-dirs key must now point down in the file system. That is, the path element “..” may not
appear in a child-dirs key. This check is important to ensure that whatever parent/child relationships between build
items abuild 1.1 would now automatically figure out is consistent with you explicitly specified in your 1.0 trees.

• The values of child-dirs keys may not be or cross over any symbolic links. In most cases, use of symbolic links for
child directories would not have worked in abuild 1.0 anyway and would have resulted in a cryptic error message.
Now abuild explicitly detects and disallows this case.

• If you use multi-element paths in your child-dirs keys (skipping directories), none of the intermediate directories
may contain Abuild.conf files. In other words, you can't interleave unrelated abuild trees. Trying to do this with
abuild 1.0 would have been crazy anyway, but abuild would not have noticed if you tried. Now it will notice and
prevent you from doing so. This check is required in order to ensure that abuild 1.1 is always able to accurately
locate the parent of any build item.

B.2. Deprecated Features
This section includes a complete list of all features from abuild 1.0 that are deprecated in abuild 1.1. Use of any of
these features will generate a warning when running in 1.0-compatibility mode. When running in 1.1-compatibility
mode, these features will not be recognized. Depending on the nature of the feature, this may result in an error (such as
using a deprecated Abuild.conf key), and in other cases, use of the feature will be ignored (such as setting a particular
make variable).

Warning

You should avoid trying to upgrade your Abuild.conf files by hand. See earlier warnings in this chapter, and
refer to Appendix C, Upgrading from 1.0 to Version 1.1, page 263 for details.

Abuild.conf keys

• Use of the this key is deprecated. This key has been replaced by name. When you run abuild --upgrade-trees
(described in Appendix C, Upgrading from 1.0 to Version 1.1, page 263), your Abuild.conf files will be
updated automatically.

• The deleted key is deprecated. Item deletion is now specified with the deleted-items key in the Abuild.backing
file.

• The external-dirs key is deprecated. External build trees have been replaced by tree dependencies as discussed
in Section B.5, “Redesigned Build Tree Structure”, page 261

• The parent-dir key is deprecated. Abuild 1.1 automatically finds parent build items, thus rendering the par-
ent-dir unnecessary.

GNU Make variables

• BUILD_ITEM_RULES is deprecated and has been replaced by a new and more flexible mechanism for speci-
fying build-item supplied rules. See Chapter 22, Build Item Rules and Automatically Generated Code , page
129 for details.

• LINK_SHLIBS is ignored and treated as if it were always set. This change was actually made in version 1.0.3,
but now use of LINK_SHLIBS generates a deprecation warning.

Properties for deprecated ant framework

• abuild.use-local-hooks is deprecated; abuild's ant framework now acts as if this is always on. Note that the
entire 1.0 ant framework is considered deprecated.

Major Changes from Ver-
sion 1.0 to Version 1.1

259

Command line arguments

• The --ant option is no longer supported since abuild no longer invokes ant. However, for backward compati-
bility, abuild will still look through any --ant arguments for arguments of the form -Dprop-val and treat them
as regular variable definitions (specified as just prop=val in abuild 1.1).

Interface Variables

• The variable ABUILD_THIS should no longer be used as it has been replaced by the more descriptively named
ABUILD_ITEM_NAME. However, it is not actual deprecated since abuild has no way to detect and report its
use in build files. As such, ABUILD_THIS will likely not be removed in a future version of abuild, though its
use in new code is discouraged.

Abuild.backing files

• In abuild 1.1, there is a new syntax for Abuild.backing files, and backing areas are at the forest level rather than
at the tree level. (For details, see Chapter 11, Backing Areas, page 59.) Abuild.backing files that just contain
a path name are deprecated.

B.3. Small, Localized Changes
This section describes small, localized changes to abuild. Some of changes described here are small changes that be
accommodated by editing individual build or configuration files. Others are new, special-purpose features.

• When abuild is invoked with no options, the effect is now as if the --with-deps or, equivalently, --build=current
option had been specified. To select the old behavior of building just the item without its dependencies, use the
newly added --no-deps option.

• The preferred way of passing variables to backend build systems is now to specify VAR=value on the command
line. Such definitions are passed to all backends. You should use this rather than the --make or (now deprecated
and mostly unsupported) --ant option.

• Abuild has a new online help system, described in Chapter 8, Help System, page 37. The targets rules-help and
interface-help have been removed in favor of the new system.

• Abuild now prints elapsed clock time before it exits.

• When one or more build items fail, abuild now provides a summary that lists the failed build items.

• It is now possible to declare local and non-recursive interface variables and also to declare and initialize interface
variables in a single statement. For details, see Chapter 17, The Abuild Interface System, page 83.

• The new Abuild.conf key name replaces this as the way to provide the name of a build item. Note that you should
not go around replacing this with name manually in existing Abuild.conf files as abuild will do this automatically
when you run abuild --upgrade-trees (Appendix C, Upgrading from 1.0 to Version 1.1, page 263).

• The new Abuild.conf key attributes can be used to assign particular supported attributes to build items. For details,
see Section 15.1, “Abuild.conf Syntax”, page 79.

• It is possible to declare plugins to be global. Global plugins are discussed in Section 29.2, “Global Plugins”, page
186.

• Build item dependencies and also newly added build tree dependencies can be declared optional; see Chapter 28,
Optional Dependencies, page 181. To go along with this, child directories specified in child-dirs can also be made
optional.

Major Changes from Ver-
sion 1.0 to Version 1.1

260

• The ABUILD_FORCE_32BIT environment variable is no longer considered temporary, and the
ABUILD_FORCE_64BIT has been added to encourage abuild to generate code of the specified word size. It is ini-
tially only supported for builds that use the gcc compiler. A future version of abuild may offer a better solution.

• The msvc toolchain can now be configured to make it easier to support different runtime and management flags,
making it possible to build applications that statically link the runtime environment or work with the .NET frame-
work. For details, see Section 18.2.2, “Options for the msvc Compiler”, page 98.

• Shared library version information is now partially supported when building DLL files. For details, see Chapter 21,
Shared Libraries, page 123.

• The behavior of when expansion of the build set is repeated during application of --related-by-traits has changed
and is now controlled by --repeat-expansion. For details, see Section 33.5, “Construction of the Build Set”, page
217.

• The new argument --with-rdeps can be used to add reverse dependencies of all specified items to the build set.

• The new command line option --find has been added to print the location of build items or build trees.

• The new command line options --ro-path and --rw-path have been added to allow certain parts of the build tree to
be treated as read only. For details, see Chapter 12, Explicit Read-Only and Read/Write Paths, page 68.

• The new command line argument --compat-level and environment variable ABUILD_COMPAT_LEVEL have been
added to specify abuild's compatibility level. Abuild will not support any features that were deprecated at a version
equal to or older than the specified compatibility level.

• Some build sets will build more items in an upgraded forest than they would have in version 1.0. For example, the
build set all now really builds all items including those in trees that your starting build item's tree doesn't depend
on. Also, the build set desc will really include all build items at or below the current directory even if they are in
trees that are not dependencies of the current tree.

• A new build set, deptrees, has been added. This build set includes all items in the current tree and its tree depen-
dencies. It essentially does what all did in version 1.0. These concepts are described in Chapter 7, Multiple Build
Trees, page 33. See also Section B.5, “Redesigned Build Tree Structure”, page 261.

• The clean target is no longer passed to the backend when abuild is invoked from an output directory. All clean
targets have been removed from rules provided by abuild and from the examples.

• Platform-specific dependencies on object-code build items are now influenced platform selectors. To create a
dependency on the default platform of a given platform type regardless of platform selectors (which was the old
behavior), specific -platform=type:default in your dependency declaration.

• The list_platforms script, for plugins that add platforms, is now invoked with information about the native platform.
See Section 29.3.2, “Adding Platforms”, page 187.

• A new utility has been added to help with caching the results of code generators. For details, see Section 22.6,
“Caching Generated Files”, page 145.

• A new file, preplugin.mk, can now contain make code to be run by every selected plugin before Abuild.mk is loaded.
This can be used to provide initialization of certain variables, among other purposes.

• QTest support now automatically exports the TC_SRCS variable to the environment, so individual Abuild.mk files
no longer need to do so.

• The verify-compiler command now accepts the --cross option to better support cross compilers that are in the
native platform type. See Section 29.4, “Adding Toolchains”, page 188 for a discussion.

Major Changes from Ver-
sion 1.0 to Version 1.1

261

B.4. Groovy-based Backend for Java Builds
An entirely new backend has been added to support Java builds, replacing the ant framework from abuild 1.0. The
new framework uses ant through a Groovy backend. For details, see Chapter 19, The Groovy Backend, page 103.

B.5. Redesigned Build Tree Structure
Abuild 1.1 introduces a new build tree structure that replaces externals with named trees and named tree dependencies.
In abuild 1.0, one build tree established a one-way relationship with another tree, gaining the ability to use the other
tree's build items without making its own build items available to the other tree, by declaring the other tree as an
external. Externals were set up by specifying a relative path to the other tree. Externals could be resolved in backing
areas by resolving that relative path as relative to the backing area instead of to the tree itself.

There were three major problems with this approach. The first and most important problem is that externals were based
on path. Not only is this in violation of a fundamental design principle of abuild, but it forced build environments
with multiple trees to organize those trees in a strict relative directory structure. Worse, knowledge of that directory
structure was not contained in any one location but was, instead, spread out among all the root build trees in the system.
This made it very hard to reuse specific trees across multiple projects or even across multiple configurations of the
same project. The second problem with the 1.0 scheme was that there was no way for you to get a complete list of
all the trees that comprised any given build environment. The third problem is that the interaction with backing areas
an externals was too complex and didn't scale. People were never really able to understand how backing areas and
externals interacted.

Abuild 1.1 resolves all of these problems by requiring build trees to be named and by setting up the one-way relationship
among build trees through named tree dependencies. The new mechanism is discussed in detail in Chapter 7, Multiple
Build Trees, page 33. Here is a brief summary of the changes:

• Abuild 1.1 introduces the term build forest to refer to the collection of all the build trees that are built together. The
1.1 concept of build forests roughly corresponds to an abuild 1.0 build tree with all of its externals.

• The this key has been replaced with name.

• Build trees are required to be named. Root build items must contain a key called tree-name which gives the name
of the tree.

• Rather than using the deprecated external-dirs key to indicate by path a one-way dependency on another build tree,
use tree-deps to indicate this dependency using the name of the other build tree. This removes abuild 1.0's flawed
use of paths for this purpose.

• The parent-dir key is no longer used.

• It is permissible to have Abuild.conf files above the roots of all your build trees that contain only child-dirs keys.
These files, in addition to build tree root files, may be roots of the entire forest of build trees.

Additionally, the way backing areas work has been significantly improved. Backing areas are discussed in Chapter 11,
Backing Areas, page 59. Here is a summary of the changes:

• Backing areas are at the forest level, not at the tree level. When abuild 1.1 is used, any given development effort
requires only a single Abuild.backing file, and that file will be located at the root of the forest. In 1.0 compatibility
mode, abuild will still use information from old style Abuild.backing files at the roots of not-yet-upgraded trees in
the forest, though such files are considered deprecated.

• Abuild.backing files are now key/value pairs like Abuild.conf files. Valid keys are backing-areas, deleted-trees,
and deleted-items.

Major Changes from Ver-
sion 1.0 to Version 1.1

262

• The paths to your backing areas are specified as the value to the backing-areas key in Abuild.backing. You may
now have multiple backing areas. Abuild will issue an error if unrelated backing areas try to supply build items or
build trees with the same name. (If one of your backing areas backs to another one of your backing areas, abuild
will notice this case and handle it appropriately.)

• The deleted key is no longer valid in Abuild.conf. Instead, use the deleted-items key in Abuild.backing. In 1.0
compatibility mode, abuild will still read the information from the Abuild.conf file and treat it as if it had been read
from an Abuild.backing file.

• It is possible to suppress inheritance of entire trees from backing ares using the deleted-trees key in Abuild.backing.

263

Appendix C. Upgrading from 1.0 to
Version 1.1

Note

Abuild is purposely stealth about pinpointing specific locations of outdated constructs in trees that are not
upgraded to encourage you to use the automated upgrade process. If you are working in a previously upgraded
tree and some deprecated feature has snuck back in but you can't find where it is, the easiest way to find it is
to run in 1.1-compatibility mode. Most outdated constructs will generate errors in 1.1-compatibility mode.

Abuild 1.1 offers many new capabilities relative to 1.0. These are summarized in Appendix B, Major Changes from
Version 1.0 to Version 1.1, page 257. Among the most significant of these changes is the redesigned build tree structure.
When abuild 1.1 is run on a set of build trees that were created to work with abuild 1.0, it internally maps the old
structure into its new representation. Abuild can make this mapping explicit by actually upgrading your trees from 1.0
to 1.1. To use abuild to upgrade your trees, you can run the command abuild --upgrade-trees. Abuild will analyze
your build area and generate a file that you have to edit. By editing this file, you supply the information that abuild can't
possibly know on its own. Once all the information is available, abuild will rewrite your Abuild.conf and Abuild.backing
files. In this chapter, we discuss a general strategy for upgrading and then proceed to provide specific instructions.

C.1. Upgrade Strategy
Abuild 1.1 can operate in 1.0 compatibility mode. If you are testing out abuild 1.1 on a build tree that is still under
active development with abuild 1.0, you should obviously wait before you try to upgrade the trees. Once you have
upgraded your build trees, abuild 1.0 will no longer be able to build them.

As a general rule, it's best to start your upgrade process with build trees that don't have any backing areas. This will
save you a lot of trouble. Most of the time, if you have backing areas and your backing areas are already upgraded,
abuild's upgrade process can run without any intervention. But we'll come back to that in the next section.

Once you are ready to start upgrading, the first thing you should do is to make sure your build is working with abuild
1.0. You must be sure to start with this as a known baseline so you can be sure problems that you find during upgrade
weren't already there.

The next thing you should do is to make sure your build still works with abuild 1.1 running in 1.0-compatibility mode,
which you can enable by passing --compat-level="1.0" on the command line or by setting the environment variable
ABUILD_COMPAT_LEVEL to “1.0”. There are a small number of non-compatible changes (Section B.1, “Non-
compatible Changes”, page 257). If your build trees run into any of those, you should try to fix them in a way that
is still compatible with abuild 1.0. You should fairly quickly be able to reach a point where you have a build tree
that builds the same way under 1.0 and 1.1. Only when you have reached this stage should you attempt to upgrade.
If you run into trouble during this process, ask for help or consult Section C.2, “Potential Upgrade Problems: Things
to Watch Out For”, page 264.

Once you have your build trees in a state where your build produces identical results with both abuild 1.0 and 1.1,
you should find a directory that is above all the trees you are trying to upgrade. If your intention is to upgrade an
entire forest of trees at once, meaning that you wish to upgrade a collection of build trees that refer to each other
through external-dirs, you should go to a common ancestor of all those trees. This will be the root of your upgraded
build forest. If you only wish to upgrade specific trees, you can just go to the root of the trees you are upgrading. The
upgrade process will allow you to upgrade your forests a little bit at a time. This is especially important for distributed
development environments in which different trees are maintained by different teams. Whichever case you pick, your
starting directory must either contain a root build item or be above the top of trees with root build items. You can't
pick a directory that's in the middle of a build tree. For example, you can't start in a directory that has a parent-dir
key or that is referred to as a child in a higher Abuild.conf file.

Upgrading from 1.0 to Version 1.1

264

Once you have identified your start directory, you should run abuild --upgrade-trees and follow the upgrade process
as described in Section C.3, “Upgrade Procedures”, page 265. At the end of that process, your trees will be upgraded,
but you are not done yet! There are still a few ways in which things can be broken, so read on.

After you have finished this stage of the upgrade process, you should once again run abuild in 1.0-compatibility mode
to make sure your build still works. If you run into problems, please consult Section C.2, “Potential Upgrade Problems:
Things to Watch Out For”, page 264.

Once your build is once again working as it should, you will want to address deprecation errors that are report-
ed by the backends. Mostly this would involve moving build item-supplied rules from Rules.mk to their new loca-
tions under rules (see Chapter 22, Build Item Rules and Automatically Generated Code , page 129) and then re-
placing BUILD_ITEM_RULES with appropriate RULES entries by the items that use them. You could also remove
LINK_SHLIBS variables that you find. After you have done this, you should hopefully reach a point where you are
no longer getting any deprecation warnings.

When you think you have eliminated all deprecation warnings, you should retry your build in 1.0-compatibility mode
with the --deprecation-is-error flag. In this mode, any deprecated features will be reported as errors instead of warn-
ings. Once your build gets past this point, then you can be confident that you are no longer using any deprecated
features.

If you have upgraded a tree that has externals that point into an area that has not yet been upgraded, though you
won't be getting any deprecation warnings, abuild will still tell you that it sees deprecated features and that you should
upgrade. This is because your root build item will still have a external-dirs key in it. Abuild is not warning you about
it specifically because there's nothing you can do about it if the directory it points to is the root of a tree that hasn't
been upgraded yet. The solution to this problem is to run the upgrade process from a higher level directory to upgrade
the other tree. If you can't do that, you'll just have to wait until the other tree is upgraded. As soon as it is, abuild
will notify you that you have an external-dirs that points to the root of an upgraded tree. Then you can run abuild --
upgrade-trees again to let abuild replace the external-dirs key with tree-deps. In the mean time, you will continue
to see the upgrade suggestion until all your build trees have been upgraded.

When you finally get to the point where all your build trees are upgraded, you should once again run with the --depre-
cation-is-error flag. This will give you one last check that you are not using any deprecated features. Once that passes,
you are finally ready to try running in 1.1-compatibility mode. To do this, either run abuild with --compat-level=1.1, set
the ABUILD_COMPAT_LEVEL environment variable to the value “1.1”, or just unset ABUILD_COMPAT_LEVEL
and don't specify a compatibility level on the command line. If all goes well, you should see no difference. Once you
have reached this point, you can be sure that your upgrade process is complete.

C.2. Potential Upgrade Problems: Things to
Watch Out For
For the most part, abuild upgrades are expected to be quite smooth as extensive testing as been done to abuild's
compatibility mode. There are a few subtleties that might cause problems. Here are some things to watch out for.

• If you have upgraded some trees in a forest and not others, you may have build trees that are fully upgraded except
that they still contain external-dirs keys in their Abuild.conf files. If this happens, when you run abuild, you will get
a warning that tells you that you should run abuild --upgrade-trees. However, if you try to run the upgrade process
from the root of that tree, it will tell you that there is nothing to upgrade. The solution is to run the upgrade process
from a directory that is above all the externals that are still there. Once the externals are upgraded, then abuild will
be able to replace the remaining external-dirs keys with tree-deps.

• In abuild 1.0, if you have a collection of trees that refer to each other through their external-dirs keys, in the context
of any tree, abuild only knows about items that are reachable from that tree. In abuild 1.1, abuild knows about all
items that are reachable from any tree in the forest. For example, if you have trees A and B that both refer to C but

Upgrading from 1.0 to Version 1.1

265

don't refer to each other, in abuild 1.0, A and B could have build items with the same name. This would work because
abuild would never know about A and B at the same time. If you came along later and make build tree D refer to
both A and B, you would get an error message at that time since abuild would complain about seeing the same item
in multiple locations. In abuild 1.1, abuild would know about all three trees and would immediately complain that
A and B both contained an item with the same name. So it's possible that, after running the upgrade process, you
may need to rename some build items. If you have been careful to stick to build item naming conventions that avoid
duplications across tree boundaries, you should not run into this problem. During alpha testing of abuild 1.1, at
least one case was encountered in which a build item had been copied from one tree to an unrelated tree without
changing its name. Abuild was able to upgrade the all the trees and complained about the problem after the upgrade
was finished.

• When abuild 1.1 encounters a build item with neither a tree-name key nor a parent-dir key, and if that build item
is not referenced as a child of the next higher build item, abuild can't tell whether it is the root of a non-yet-upgraded
build tree or whether it just hasn't been properly added to its parent's Abuild.conf as a child. In 1.0-compatibility
mode, abuild will guess that it's missing from its parents Abuild.conf if there is a name key. Otherwise, it will
guess that it is the root of a forest. In 1.1-compatibility mode, abuild will issue an error. If you are running in 1.0-
compatibility mode on upgraded trees and you get unexplained errors about build items not being known, you might
first try running in 1.1-compatibility mode where you might get a better error message. If you have intentionally
left it out of the parent's Abuild.conf file because you want to disable the build item for some reason, then you must
either enter this directory in the ignored directories section of the abuild.upgrade-data file or add it back as a child
of its parent during the upgrade process and remove it again later.

• In the make backend, compiler toolchain implementation files are now loaded before Abuild.mk. Most of the time,
this won't matter, but sometimes it might, particularly in the case of errors in Abuild.mk that may have not mattered
before. For example, a Abuild.mk file may check to see whether a variable is defined or not and take some action
based on that. If the variable in question is defined by a toolchain support file, it could change the semantics of such
a check. At least one case was found during testing in which a Abuild.mk file assigned to XCPPFLAGS using “:=”
in Abuild.mk thus overwriting values supplied by the interface system. Additional values supplied by the toolchain
support file in turn modified the value as supplied by the user's Abuild.mk, which allowed the incorrect assignment to
go unnoticed. With the 1.1 load ordering change, the error in Abuild.mk suddenly caused the build to stop working.

Again, in the vast majority of cases, Abuild.mk files should not need to be changed as a result of this ordering change,
but if your Abuild.mk is inspecting or modifying variables that are also used by the toolchain support files, you may
see a slight change in semantics.

C.3. Upgrade Procedures
This section covers the specific steps involved in running abuild --upgrade-trees to upgrade the Abuild.conf and
Abuild.backing files in your tree. Recall that this is only one step of the overall upgrade process, though it is the most
significant step.

Note

The abuild --upgrade-trees process will create some new files and will remove or modify some old files,
always saving the old versions. When you run abuild --upgrade-trees, it is highly recommend that you
capture the output using script or tee so you can see a log of exactly which files were removed, added, and
changed by the process.

C.3.1. High-level Summary of Upgrade Process
Here is an outline of the basic process:

• Change your current directory (cd) to a directory that is above all your build trees and that you wish to use as the
new forest root. This should be a common ancestor of all the trees you wish to upgrade.

Upgrading from 1.0 to Version 1.1

266

• Run abuild --upgrade-trees.

• Abuild analyze all Abuild.conf files that it finds at or below your starting directory. It will then generate a file called
abuild.upgrade-data that you will have to edit. Edit the file as described below.

• Once you have filled in all required information in abuild.upgrade-data, rerun abuild --upgrade-trees. This time,
it will perform the upgrade by rewriting any Abuild.conf or Abuild.backing that needs to be rewritten. The original
file will be renamed to Abuild.conf-1_0 or Abuild.backing-1_0. When you are satisfied with the upgrade, you can
delete the *-1_0 files, as those files are never used by abuild. You should also be sure to remove deleted files and
check in added and modified files with your version control system. Remember that, in addition to modifying files,
some files may be added or removed.

Generally, if you have a backing area, you should upgrade the backing area first. If your backing areas are set up such
that each tree backs to the corresponding tree in the backing area and if you have not added any new trees in your
area, the upgrade of your regular area may work without any intervention, as abuild will use the backing area to figure
out tree names for trees that are backed.

Among the most significant changes to abuild for version 1.1 is the requirement that all build trees have names. In
order for abuild to upgrade your trees from version 1.0 to version 1.1, it will need to know what name you wish to
assign to all your build trees. You will use the abuild.upgrade-data file to provide this information to abuild.

Note that abuild's upgrade process is extremely tolerant of partially upgraded forests. It uses exactly the same logic as
abuild's normal build process (it is part of abuild, after all) to internally map a forest consisting of a mixture of 1.0 and
1.1 files into an internal 1.1 structure. The main difference between the upgrade procedure and abuild's normal build
process is that, when upgrading, abuild requires you to provide names of previously unnamed trees, while during the
build process (in 1.0-compatibility mode only) it will generate a temporary name on the fly. So if a tree already has a
name, or if abuild can figure out what its name is from a backing area, it will use that information. Otherwise, it will
use the information you supply in abuild.upgrade-data.

Once it has all the required information, abuild will insert the tree-name key into the root Abuild.conf file of every
tree, and it will replace any external-dirs keys with tree-deps keys. It will also remove parent-dir keys, replace this
with name, upgrade Abuild.backing files including merging tree-level Abuild.backing files into a single forest-level
Abuild.backing file, and remove any occurrences of deleted from root Abuild.conf files, moving the information into
the deleted-items key of the new forest-wide Abuild.backing file. In addition, if you have any trees that are nested
inside your existing trees, abuild will add child-dirs entries to those root items' parent Abuild.conf files to connect
them into the forest. (Recall that, in abuild 1.1, nested tree roots are discovered through child-dirs just like any other
build items. In 1.0, they were connected into the forest using path names in other trees' external-dirs keys instead.)

During the analysis process, abuild will find all tree roots at or below your starting directory. It will study them,
examining any external-dirs or tree-deps keys to figure out which trees refer to which other trees. It will then group
trees into separate, independent forests so that it can upgrade each forest separately. The list of forests is generated
such that no tree in one forest refers to any tree in another forest through any of its items' Abuild.conf files. In many
cases, you will find that there is only one forest. However, if you have self-contained collections of build trees nested
within your primary forest, those will be recognized as separate. This could happen for several reasons, including the
following:

• Maybe you used abuild to build some self-contained, third-party software and you kept a copy of the Abuild.conf
files.

• You might have test suites that contain self-contained build trees. This is certainly true of abuild's own source tree
which contains numerous self-contained build trees in its own test suite.

• You may have stray Abuild.conf files that you never actually connected into your regular build trees. You might
just be able to delete them as part of the upgrade process.

For each independent forest abuild finds, it will pick a top-level directory for that forest. This will be the lowest
directory abuild can find that is a common ancestor of all the trees in the forest. This directory might, in some cases,

Upgrading from 1.0 to Version 1.1

267

be the root of one of the trees in the forest. If not, it might be a directory that contains no Abuild.conf file. In that case,
abuild will create a Abuild.conf file containing only a child-dirs key whose value is the relative paths to all the root
directories of all the build trees in the forest. You may wish to manually edit this file depending on how you intend
to organize your forest. In some cases, abuild may include references to trees that are not always present. When this
happens, you may wish to add the -optional flag after the directory name in the child-dirs key.

C.3.2. Editing abuild.upgrade-data
This section describes how to edit the abuild.upgrade-data file. Here's a “quick start” for the impatient or those who
are already basically familiar with the process:

• For each directory whose contents you wish to (recursively) ignore (such as nested trees you're not ready to upgrade),
place the directory in the [ignored-directories] section. Place one directory per line, and specify directories relative
to the one containing the abuild.upgrade-data file.

• For each remaining detected build tree root below, replace “***” with the name you intend to give the tree.

• Lather, rinse, repeat.

The abuild.upgrade-data file is a configuration file used to assist abuild --upgrade-trees. Every time abuild --up-
grade-trees is run, it will replace this file, so any comments or formatting changes you make will be lost. Any tree
names you assign will be preserved even if abuild no longer believes the directory is a tree root, so it is very unlikely
that abuild will throw away work you have already done toward editing this file. If you're paranoid, make a backup
copy of abuild.upgrade-data before rerunning abuild --upgrade-trees.

The abuild.upgrade-data file consists of sections Each section is opened with a line of the form

[section-name]

where section-name is replaced by one of the valid section names.

There are three sections:

[ignored-directories]
lists directories that will be skipped during the upgrade

[forest]
a repeatable section; one occurs for each group of trees that abuild finds to be in a given forest

[orphan-trees]
an optional section used to hang onto names previously assigned to any trees root at directories that no longer
appear in a known forest

If there are directories below the start directory that you wish to ignore during the conversion process, list them in the
[ignored-directories] section. Abuild will ignore those directories when looking for Abuild.conf files.

In each forest that abuild discovers, it will require a name for each tree. If the tree already has a name, that name will
appear in the file. Otherwise, the place-holder “***” will appear. Your job is to go through and replace all occurrences
of “***” with the name you wish to assign to the tree rooted at that directory.

In some cases, there may be a tree that you are not ready to upgrade, perhaps because that tree is still being used
by a project that hasn't yet upgraded its version of abuild. In that case, just list the path to the root of the tree in the
[ignored-directories] section. You do not need to remove it from the [forest] section in which it appears; abuild will
remove it from there automatically next time it writes the file. If you subsequently change your mind and remove
the path from [ignored-directories], abuild will move it back to the appropriate [forest] section. This is also where

Upgrading from 1.0 to Version 1.1

268

[orphan-trees] comes into play: if you had assigned a name to a tree that ended up later under an ignored directory,
that path and assigned name will get moved to [orphan-trees]. if you later remove the ignored directory entry, abuild
will move the path back out of [orphan-trees] so you will not lose the name you previously assigned to the tree.

Abuild is able to perform the actual upgrade when all of the following conditions are met:

• Abuild is able to parse all Abuild.conf files at or below the current directory, excluding any ignored directories,
without finding any errors.

• Every external-dirs entry exists or can be resolved through a backing area. There is one exception, discussed below.

• No external-dirs entries cross over any symbolic links

• Every tree root listed in every [forest] section has a name assigned to it.

• Every tree that abuild finds during its scan as well as every external-dirs entry referenced by those trees that points
to a place at or below the start directory appears in a [forest] section and has a name assigned to it.

Abuild is usually able to upgrade forests with backing areas, but it will not do so if any externals resolve to 1.0-style
trees in backing areas. (That is, the external doesn't exist relative to the tree that declares it but does exist relative to that
tree's backing area.) In that case, you must either upgrade the backing area first (which is the recommended practice)
or make the external resolve locally. You can make the external local by just creating a directory and populating it with
an Abuild.conf and an Abuild.backing. The reason for this restriction is that abuild will not read the Abuild.backing file
of an upgraded tree root that is not at the root of a forest. This means that abuild would no longer be able to resolve
the external in the backing area. As discussed, it is best to upgrade your backing area first anyway since upgrades to
forests with upgraded backing areas often require no manual intervention.

269

Appendix D. Known Limitations
Here we list known limitations of abuild. These limitations will hopefully be addressed over time.

dependence on Cygwin for make on Windows
On Windows, using abuild to build Java code works fine and should be comparable in performance to building
Java code with abuild on a UNIX platform. For C/C++ builds, abuild uses Cygwin for GNU Make and perl. It
can use Visual Studio for compilation and can produce targets that don't depend on Cygwin, but abuild itself uses
Cygwin. The overhead of running things in Cygwin is very high, and the result is that abuild for C/C++ is slow
on Windows even though the Windows compilers are actually quite fast. We need to get abuild working properly
with a native GNU Make and remove the last uses of perl from abuild, which means rewriting gen_deps in C++ or
otherwise folding it into the abuild sources. The automated test system that is integrated in abuild is likely to stay
in perl and likely to continue to require Cygwin, but perhaps that can be rewritten or can be ported to a native perl
when a native Windows perl that supports the "|-" form of open is released. Empirical tests suggest that compiling
multiple source files at once results in negligible performance improvement. Most of the performance penalty on
Windows appears to be spawning processes, particularly when Cygwin is involved. This is true, however, even
with Visual Studio's nmake utility and not the result of something about how abuild is implemented.

Incomplete mingw Support

Although mingw is partially supported and the mingw compiler passes the compiler verification support, mingw
support is not really complete in abuild. In particular, we only offer mingw as a valid compiler if the MINGW
environment variable is set to 1, and we use gcc -mnocygwin from cygwin to get mingw. This means that absolute
Windows paths won't work. Although abuild tries to use relative paths when possible, paths on different drive
letters are always given as absolute paths. In spite of these limitations, mingw support should work okay for build
environments in which everything is under the same drive letter. If necessary, builds that have to work with both
Microsoft Visual C++ and mingw can have conditionals in their build or interface files. Hopefully a future version
of abuild will better address this.

270

Appendix E. Online Help Files
This appendix includes the text of all of abuild's internal online help.

E.1. abuild --help groovy

This help file provides a quick reminder on using Abuild.groovy files.
For additional details, please consult the abuild manual.

General Abuild.groovy Help

Abuild.groovy files are interpreted by groovy and contain groovy code.
Most Abuild.groovy files should do nothing other than setting abuild
parameters. All Abuild.groovy files must set either abuild.rules or
abuild.localRules. The preferred syntax is

parameters {
 abuild.rules = 'rulename'
}

The abuild.rules parameter should be set to the name of a rule set.

To see what rules are available, run

abuild --help rules list

To get help on a specific set of rules, run

abuild --help rules rule:rulesetname

For example

abuild --help rules rule:java

Most Abuild.groovy files will include a parameter block that sets
abuild.rules to 'java' and sets additional parameters as required by
the 'java' rule set.

Custom Targets

When adding custom targets, set abuild.localRules to the name of a
file that contains the rules. For example:

parameters {
 abuild.localRules = 'local.groovy'
}

Abuild targets defined within groovy have associated dependencies and
closures. From the context of a groovy rules file, you can always

Online Help Files

271

access the abuild object under the name "abuild" and the current ant
project as a groovy ant builder under the name "ant".

The abuild object offers a number of methods for configuring targets.
A commonly used one is "addTargetClosure", which adds additional code
to be run when a given target is invoked. For example, the following
block of code in a local rules file would invoke ant's "echo" task
with the message 'hello' when the "all" abuild target is built:

abuild.addTargetClosure('all') {
 ant.echo('message': 'hello')
}

You can access parameters and interface variables by using the
abuild.resolve method. For example, abuild.resolve('VAR') would
provide the value of the VAR parameter or interface variable.

For additional details, please consult the abuild manual.

E.2. abuild --help helpfiles

The abuild help system reads various help files. Help files are just
text files. Lines beginning with # are stripped before displaying the
file contents to the user.

E.3. abuild --help make

This help file provides a quick reminder on using Abuild.mk files.
For additional details, please consult the abuild manual.

General Abuild.mk Help

The Abuild.mk file is parsed by GNU Make and therefore has GNU
Makefile syntax. It is intended to contain make code but not to
contain any make targets. Custom targets should be added to build
item-supplied rules files or local rules files. Most Abuild.mk files
contain only variable settings.

Every Abuild.mk file must set either RULES or LOCAL_RULES and may set
both. Most Abuild.mk files will set RULES and not set LOCAL_RULES.

If RULES is set, it should be set to the name of a rule set. To see
what rules are available, run

abuild --help rules list

To get help on a specific set of rules, run

Online Help Files

272

abuild --help rules rule:rule-set-name

For example

abuild --help rules rule:ccxx

Most Abuild.mk files will include

RULES := ccxx

along with other variable settings required by the ccxx rules, which
are described in the help file for the ccxx rules.

Conditionals

All Abuild.interface variables defined by a build item and its
dependencies are available as make variables within Abuild.mk. When
writing conditional code, remember that you have to use GNU Make
syntax, not abuild interface syntax. For example, you could add the
-Werror flag to WFLAGS when running gcc with

ifeq ($(ABUILD_PLATFORM_COMPILER), gcc)
WFLAGS += -Werror
endif

Consult the GNU Make documentation for additional details.

Custom Targets

When adding custom targets or custom behavior, set LOCAL_RULES to the
name of a file that contains the make code. For example:

LOCAL_RULES := local.mk

would tell abuild to load local.mk for additional make code. If you
want to add something to the default target, you would define your own
"all" target. You must use two colons when defining the target, which
tells GNU Make to allow other definitions of the target. For example:

all::
 your-rules-here

would add an additional action to be run with the "all" target. Bear
in mind that, in a parallel build, your all target can be run
simultaneously with other targets, so you can't rely on its being
invoked in any particular sequence.

E.4. abuild --help usage

Online Help Files

273

Usage: abuild [options] [defines] [targets]

This help message provides a brief synopsis of supported arguments.
Please see abuild's documentation for additional details.

Options, defines, and targets may appear in any order. Any argument that
starts with "-" is treated as an option.

Any option not starting with - that contains an = is treated as a variable
definition, with the variable name being everything prior to the first =.
These are passed as variables to make, properties to ant, keys in
abuild.defines for groovy.

If no targets are specified, the "all" target is built.

OPTIONS

 -H | --help print help message and exit
 -V | --version print abuild's version number and exit

 --apply-targets-to-deps apply explicit targets to dependencies as well;
 when cleaning with a clean set, expand to include
 dependencies
 --buffered-output produce the entire output of a specific item's
 build after the item finishes building; prevents
 interleaving of output in multithreaded builds
 --build=set | specify a build set; see below for a list of valid sets
 -b set
 -C start-dir change directories to start-dir before running
 --clean=set | specify a clean set; see below for a list of valid sets
 -c set
 --clean-platforms=pattern when cleaning, only remove platforms that
 match the given shell-style filename pattern
 --compat-level=x.y disable backward compatible for constructs that
 were deprecated at or before version x.y
 --deprecation-is-error treat deprecation warnings as errors
 --dump-build-graph dump abuild's internal build graph
 --dump-data dump abuild's data to stdout and build no targets
 --dump-interfaces write details about items' interfaces to files
 in the output directory
 -e | --emacs pass the -e flags to ant and also set a property
 telling our ant build file that we are running in
 emacs mode.
 --error-prefix=prefix prepend the specified prefix to every error
 message generated by abuild as well as every line
 any build program writes to standard error; see
 also --output-prefix
 --find={ item-name | tree:tree-name} print the location of build item
 item-name or build tree tree-name
 --find-conf look above the current directory to find a directory
 that contains Abuild.conf and run abuild from there
 --full-integrity check integrity for all items, not just items being built
 --interleaved-output in a multithreaded build, interleave the
 output of all items building in parallel, and

Online Help Files

274

 prefix each line of output (normal and error) with
 a marker that the item that produced it; this is
 default for multithreaded builds
 --jobs=n | -jn build up to n build items in parallel
 --jvm-append-args ... --end-jvm-args append to the list of extra
 arguments passed to the java builder JVM; for
 debugging only
 --jvm-replace-args ... --end-jvm-args replace the list of extra
 arguments passed to the java builder JVM; for
 debugging only
 --keep-going | don't stop when a build item fails; also tells backend
 -k not to stop on failure
 --list-platforms list all object-code platforms
 --list-traits list all known traits
 --make-jobs[=n] passes the -j flag to make allowing each make to use
 up to n jobs; omit n to let it use as many as it can
 --make pass all remaining arguments to make
 --monitored run in monitored mode
 -n pass no-op flag to backend
 --no-dep-failures when used with -k, attempt to build items even when
 one or more of their dependencies have failed
 --no-deps build only the current item without its dependencies
 --only-with-traits=trait[,trait,...] remove all items from build set
 that do not have all of the named traits
 --output-prefix=prefix prepend the specified prefix to every
 non-error line of output generated by abuild or
 any program it invokes; see also --error-prefix
 --platform-selector=selector | specify a platform selector
 -p selector for object-code platforms; see below
 --print-abuild-top print the path to the top of the abuild installation
 --raw-output do not capture or process output generated by
 programs abuild invokes; this is the default for
 single-threaded builds
 --related-by-traits=trait[,trait,...] add to the build set all items that
 relate to any item already in the build set by all of
 the named traits
 --repeat-expansion repeat expansion from --related-by-traits or
 --with-rdeps until no new build items are added to
 the build set
 --ro-path=dir repeatable: treat everything under dir as read only
 --rw-path=dir repeatable: treat everything under dir as writable
 --silent suppress most non-error output
 --upgrade-trees run special mode to upgrade build trees
 --verbose generate more detailed output
 --with-deps | -d short-hand for --build=current; on by default
 --with-rdeps expand build set with reverse dependencies of all
 items in the build set

BUILD/CLEAN SETS

 all all buildable/cleanable items in writable build trees
 deptrees all items in the local tree and its full tree-deps chain
 local all items in the local build tree
 desc all items at or below the current directory

Online Help Files

275

 descending alias for desc
 down alias for desc
 deps all expanded dependencies of the current item
 descdeptrees intersection of desc and deptrees
 current the current item
 name:name,... items with the given names
 pattern:regex items whose names match the given regular expression

 When building (as opposed to cleaning), all build sets automatically
 include dependencies that are satisfied in writable build trees.

PLATFORM SELECTORS

 Platform selectors may be specified with --platform-selector and in the
 ABUILD_PLATFORM_SELECTORS environment variable. A platform selector is
 of this form:

 [platform-type:]match-criterion

 A match-criterion may be on the following:

 option=<option>
 compiler=<compiler>[.<option>]
 platform=<os>.<cpu>.<toolset>.<compiler>[.<option>]
 all
 skip

 Any criterion component may be '*'.

TARGETS

 The special targets "clean" and "no-op" are not passed to the
 backend build tools and may not be combined with any other targets.
 Other targets are passed directly to the backends.

E.5. abuild --help vars

The following interface variables are defined automatically by abuild:

ABUILD_STDOUT_IS_TTY: boolean indicating whether or not standard
output is a terminal; potentially useful in test environments

ABUILD_ITEM_NAME: the name of the current item
ABUILD_TREE_NAME: the name of the current item's tree
ABUILD_TARGET_TYPE: the target type of the current item
ABUILD_PLATFORM_TYPE: the platform type of the current item
ABUILD_OUTPUT_DIR: the output directory of the current item/platform
ABUILD_PLATFORM: the platform of the current build of the current item

For object-code build items, these variables provide access to the
individual fields of the platform string:

Online Help Files

276

ABUILD_PLATFORM_OS string
ABUILD_PLATFORM_CPU string
ABUILD_PLATFORM_TOOLSET string
ABUILD_PLATFORM_COMPILER string
ABUILD_PLATFORM_OPTION string

The following variables are used by C/C++ rules. You can assign to
them in your Abuild.interface files. You can also append to them in
Abuild.mk if needed, though it's usually not recommended. If you do,
you should use +=, rather than = or :=, in order to avoid overriding
assignments made in your dependencies' interface files.

declare INCLUDES -- include directories
declare LIBS -- libraries specified without the "-l"
declare LIBDIRS -- library directories
declare XCPPFLAGS -- extra flags passed to the C preprocessor
declare XCFLAGS -- extra flags passed to the C compiler
declare XCXXFLAGS -- extra flags passed to the C++ compiler
declare XLINKFLAGS -- extra flags passed to the linker

For java build items, these variables are also defined:

abuild.classpath -- items used at compile-time, run-time, and in packaging
abuild.classpath.external -- used at compile-time but not in packaging
abuild.classpath.manifest -- to be included in the manifest of direct
 reverse dependencies

The abuild.classpath.manifest variable "non-recursive", meaning you
only see assignments made to it your own build item and in those on
which you directly declare dependencies. You do not see assignments
made to it by your indirect dependencies.

If you declare any optional dependencies, for each optional dependency
"item" that you declare, a variable called

 ABUILD_HAVE_OPTIONAL_DEP_item

is declared as a local variable. You have access to it in your own
Abuild.interface, but it will not be visible to items that depend on
your item.

E.6. abuild --help rules rule:empty
The "empty" rules are provided for cases in which you have to supply
some value but don't have anything to build. They are available for
both Groovy-based and make-based builds.

There are two typical reasons why you might use these rules:

 * You wish to have accessed to globally available features such as
 qtest support. If you have a build item that has qtest-based test
 suites but doesn't actually have to build anything, you can use the

Online Help Files

277

 "empty" rules.

 * You decide which rules to use based on some kind of conditional
 logic. For example, for a Windows-only build item, you might use
 RULES=ccxx Windows and RULES=empty everywhere else.

E.7. abuild --help rules rule:groovy

** Help for users of abuild.rules = ['java', 'groovy'] **

The "groovy" rules add compilation of Groovy source code using groovyc
to the "java" rules. They are structured in the same way as the
"java" rules are structured. Run abuild --help rules rule:java for
details.

You must use the 'java' rules together with the 'groovy' rules. You
can list them in either order. If you list 'java' first, abuild will
compile your Java code before your Groovy code. If you list 'groovy'
first, abuild will compile your Groovy code before your Java code. If
some of your Groovy classes depend on some of your Java classes or
vice versa, you should make sure you put your rules in the right
order. If you want to mix Groovy and Java sources in the same build
item, they should not be interdependent or else you will have a hard
time doing a clean build.

With the groovy rules, we have these two additional properties

 groovy.dir.src (src/groovy): the default location for Groovy sources

 groovy.dir.generatedSrc (abuild-java/src/groovy): the default
 location for automatically generated groovy sources

Now new targets are added. The control parameter

 groovy.compile

is supported to control groovy compilation. Its fields are

 srcdirs: defaults to groovy.dir.src + groovy.dir.generateSrc
 destdir: defaults to java.dir.classes
 classpath: defaults to abuild.classpath + abuild.classpath.external

Any additional keys are passed as attributes to the groovyc task.

E.8. abuild --help rules rule:java

** Help for users of abuild.rules = ['java'] **

BASIC USAGE

Online Help Files

278

===========

(For advanced usage, see below -- many options are available beyond
what is described in this section.)

JAR files

Required for all JAR files:

 java.jarName = 'name-of-jar-file.jar'

To add a Main-Class attribute key:

 java.mainClass = 'class.containing.main'

To create a wrapper script:

 java.wrapperName = 'name-of-wrapper-script'

WAR files

Required for all WAR files:

 java.warName = 'name-of-war-file.war'
 java.webxml = 'path-to-config.xml'

EAR files

Required for all EAR files:

 java.earName = 'name-of-ear-file.ear'
 java.appxml = 'path-to-application.xml'

High-level JAR-like archives

 java.highLevelArchiveName = 'name-of-archive.ext'

JAR signing

 java.sign.alias - required "alias" attribute of signjar task
 java.sign.storepass - required "storepass" attibute of signjar task
 java.sign.keystore - "keystore" attribute of signjar task
 java.sign.keypass - "keypass" attribute of signjar task
 java.jarsToSign - JAR files to sign; usually set from
 values of interface variables

JUnit

Online Help Files

279

 java.junitTestsuite - name of class with JUnit test suite
 java.junitBatchIncludes - pattern matching classes with test suites
 java.junitBatchExcludes - pattern to filter out classes to search
 for test suites

javadoc

 java.javadocTitle: Doctitle and Windowtitle

GENERAL INFORMATION
===================

If you're familiar with the general structure of the java rules and
you just need to be reminded about specific parameters and control
parameter attribute map keys, search for SPECIFIC PARAMETERS below.

The general pattern is that the behavior all targets can customized in
layers. Implementation of this pattern is achieved through using the
abuild.runActions call. For examples, consult the abuild manual or
look at rules/java/java.groovy.

LAYER 1: DEFAULT USE

By default, all targets are activated either by the existence of
certain files or by setting certain parameters. No targets generate
error conditions or do anything at all when not activated.

For example, the "compile" target won't compile anything if there are
no .java files in src/java, and the "package-jar" target won't create
any JAR files if java.jarname property is not set.

To use these rules at layer 1, you just have to set required
parameters or create required input files. This is all most build
items will have to do.

LAYER 2: OVERRIDING DEFAULTS

In most cases, there is some parameter that can be overridden to
change the default behavior of a particular build item. For example,
you can set the parameter java.dir.src to change the default location
where abuild looks for Java sources. A list of parameters is
presented below. All parameters that can be customized in this way
are declared in _base.groovy for all built-in rules implemented for
the Groovy backend.

LAYER 3: TARGET-SPECIFIC CONTROL PARAMETERS

Online Help Files

280

Each target has a control parameter. The control parameter's value,
if defined, is always a list. Each element of the list is either a
map or a closure. To customize at layer 3, we set the control
parameter to a list of maps. This can be done by appending a map to
the value of the control parameter.

Each target has a map of "default attributes". Many of the values of
the map are initialized directly or indirectly from general
parameters. If a target's control parameter is not defined, abuild
runs the target as if the control parameter were a list containing the
default attribute map. The fact that the default attribute map is
itself initialized from other parameters provides the mechanism behind
which layer 2 customization works.

If the control parameter is explicitly initialized, each map element
of the list is expanded by copying into it any elements from the
default attribute map that are not locally overridden.

The control parameter may contain multiple elements. In this case,
the target's main closure will be run multiple times, once for each
map. This makes it possible for a single build item to create
multiple JAR files, for example.

LAYER 4: CUSTOM CLOSURES

The control parameter for a target can also contain closures. In the
description of layer 3 customization, we described what happens with
map elements. If any control parameter element is a closure, abuild
just calls the closure. Setting a target's control parameter to a
list containing a single closure allows you to completely override the
behavior of the target. You can also set the control parameter to a
combination of maps and closures, which enables you to combine custom
behavior with default behavior.

CLASS PATHS

Abuild's java rules define four class paths:

 compile-time: JAR files used at compile time; the classpath argument
 to javac

 run-time: JAR files used at runtime; the classpath argument when
 running test suites

 package: JAR files or other archives included in higher level
 archives

 manifest: JAR files whose names are to be listed in the Class-Path
 manifest key of JAR files

These four class paths are initialized from the three classpath

Online Help Files

281

abuild interface variables as follows:

 compile-time: abuild.classpath + abuild.classpath.external - locally
 created JAR files

 runtime: abuild.classpath + abuild.classpath.external

 package: abuild.classpath

 manifest: abuild.classpath.manifest

Note that we explicitly exclude any locally created JAR files from the
compile-time class path. This helps to keep clean builds and
consistent with incremental builds. Users of the runtime classpath
may, in some cases, have to explicitly add locally generated archives
if they have not been included in abuild.classpath or
abuild.classpath.external in the host item's Abuild.interface file.

OVERRIDING INTERFACE VARIABLES

The classpath values in particular are derived from interface
variables rather than parameters. Generally speaking, you should not
have to override them in Abuild.groovy files, but there may be certain
instances in which it can be useful. Because of the way abuild
initializes parameters when you append to them, it works to do
something like

 abuild.classpath.external << 'something.jar'

This will convert abuild.classpath.external from an interface variable
to a parameter, and the parameter value will be used to initialize the
appropriate class path.

TYPES OF DIRECTORIES
====================

When compiling Java files and creating packages, there are directories
for the following kinds of things:

 * Java sources: contains .java files that are compiled to .class
 files with javac

 * Java class files: contains .class files; could contain other
 generated files as well

 * Resources: contains arbitrary files that are to be packaged

 * META-INF: contains files to go into META-INF except for a few
 specific types of files that are called out separately

 * web content: contains files that are to be at the root of WAR files

Online Help Files

282

 * WEB-INF: contains files for the WEB-INF directory of WAR files

When creating all types of archives except for WAR files, the package
is created from the contents of classes and resources directories with
each file being placed in the archive at the same relative position as
it was in the classes or resources directory. Additionally, the
package's META-INF directory contains files from the META-INF
locations preserving relative location.

For WAR files, class and resources directories are used to populate
WEB-INF/classes instead of the root of the archive. The root of the
archive takes files from the web content directories, again preserving
relative location of the files. The WEB-INF directory is packaged
from WEB-INF locations in the same manner.

DEFAULT PARAMETERS
==================

The following parameters control behavior of specific tasks:

 java.includeAntRuntime -- value of the includeantruntime attribute
 to the javac task; default is false

The following parameters can be used to add locations in which
abuild look for specific types of files. You can append to these in
your Abuild.groovy file (e.g., java.dir.extraSrc << 'src/java2'). All
relative paths are treated as relative to the build item directory
(the one that contains Abuild.groovy).

 java.dir.extraSrc -- additional Java source directories
 java.dir.extraResources -- additional resource directories
 java.dir.extraMetainf -- additional META-INF directories
 java.dir.extraWebContent -- additional web content directories
 java.dir.extraWebinf -- additional WEB-INF directories

The following parameters contain the default locations where abuild
will look for various types of files. They can be be modified to
deviate from abuild's build conventions. As a general rule, it's a
good idea not to modify these. These values are all treated as
relative to the build item directory.

 java.dir.src (src/java): location of Java sources
 java.dir.resources (src/resources): location of resource files
 java.dir.metainf (src/conf/META-INF): location of META-INF files
 java.dir.webContent (src/web/content): location of web content
 java.dir.webinf (src/web/WEB-INF): location of WEB-INF files

The following parameters provide locations that the java rules use for
generating its outputs. You can modify these, but you probably
shouldn't.

 java.dir.dist (dist): for JAR files and other published artifacts
 java.dir.classes (classes): for .class files

Online Help Files

283

 java.dir.signedJars (signed-jars): temporary location for signed JARs
 java.dir.junit (junit): JUnit ouptut
 java.dir.junitHtml (junit/html): JUnit HTML reports

The following parameters provide the locations for generated files.
There's really no good reason to change these. If you are creating a
code generator, you should use these parameters to decide where to put
whatever you're generating. The purposes of the directories are the
same as their non-generated counterparts.

 java.dir.generatedDoc: abuild-java/doc
 java.dir.generatedSrc: abuild-java/src/java
 java.dir.generatedResources: abuild-java/src/resources
 java.dir.generatedMetainf: abuild-java/src/conf/META-INF
 java.dir.generatedWebContent: abuild-java/src/web/content
 java.dir.generatedWebinf: abuild-java/src/web/WEB-INF

TARGET DEPENDENCIES
===================

The following chart illustrates the dependencies among the targets
provided by the java rules.

 all -> package, wrapper

 package -> package-ear -> { package-high-level-archive, package-war }

 package-high-level-archive -> sign-jars

 package-war -> sign-jars

 wrapper -> package-jar

 sign-jars -> package-jar

 package-jar -> compile -> generate -> init

 test-only -> test-junit

 doc -> javadoc

SPECIFIC PARAMETERS
===================

For each target, we will describe the attributes in its default
attribute map and where they come from. From here, it is possible for
you to figure out which parameter to change to override the default.
For example, for the package-jar target, the 'jarname' key in the map
gets its value from the 'java.jarName' parameter. This means you can
set the name of the primary JAR artifact by setting java.jarName.

In each case below, we present the map key, its default value usually

Online Help Files

284

specified as a parameter name, and its purpose. If a default value is
given as a particular classpath, its initialization is as described
above in CLASS PATHS.

COMMON FOR ARCHIVE TARGETS

Unless otherwise noted, all archive targets' control parameters
support the following keys:

distdir (java.dir.dist): directory into which artifact will be placed
classesdir (java.dir.classes): classes directory
resourcesdirs (java.dir.resources + java.dir.generatedResources):
 resource directory
extraresourcesdirs (java.dir.extraResources as list): additional
 resources directories
metainfdirs (java.dir.metainf + java.dir.generatedMetainf): META-INF
 directories
extrametainfdirs (java.dir.extraMetainf as list): additional META-INF
 directories
extramanifestkeys (empty): a map whose keys are extra keys for the
 Manifest and whose values are the values of those keys

TARGET: init

No customization available. Initializes internal fields used by other
rules.

TARGET: generate

No customization available; no action provided by default. This
target is provided for user-provided rules to add closures to in order
to implement their own code generation steps. User-provided code
generators are encouraged to follow the same layered customization
model as the java rules.

TARGET: compile

Purpose: compile Java sources into class files

Name of control parameter: java.compile

srcdirs (java.dir.src + java.dir.generatedSrc): source directories
extrasrcdirs (java.dir.extraSrc as list): additional source
 directories
destdir (java.dir.classes): where to write class files
classpath (compile classpath): compile-time classpath
compilerargs (['-Xlint', '-Xlint:-path']): additional arguments to javac

Online Help Files

285

debug (true): value of the debug attribute to the javac ant task
deprecation (on): value of the deprecation attribute to the javac ant task
includeantruntime (java.includeAntRuntime): value of the includeantruntime
 attribute to the javac ant task

Any additional keys are treated passed as additional attributes to the
javac ant task.

TARGET: package-jar

Purpose: create JAR files

Name of control parameter: java.packageJar

contains default archive keys plus the following:

jarname (java.jarName): the name of the JAR to create
mainclass (java.mainClass): the name of the main class
manifestclasspath (manifest classpath): the manifest classpath

The "jarname" key (possibly initialized from java.jarName) must be
defined in order for this target to create any artifact.

Any additional keys are treated passed as additional attributes to the
jar ant task.

TARGET: sign-jars

Purpose: sign JAR files for inclusion in higher level archives

Name of control parameter: java.signJars

alias (java.sign.alias): required attribute of signjar ant task
storepass (java.sign.storepass): required attribute of signjar ant task
keystore (java.sign.keystore): optional attribute of signjar ant task
keypass (java.sign.keypass): optional attribute of signjar ant task
lazy (true): whether or not to use lazy JAR signing
signdir (java.dir.signedJars): directory into which to place the signed JARs
jarstosign (java.jarsToSign): a list of JAR files to sign
includes ('*.jar'): sign everything in signdir that matches this pattern

This target copies all the jars listed in jarstosign into signdir and
then signs them in place using the specified parameters. Lazy JAR
signing is enabled by default to allow idempotent builds (in other
words, so that a build of an already-built area doesn't do anything
new).

In order for this target to do anything, alias and storepass must be
provided and either jarstosign must be provided or signdir must
already exist.

Online Help Files

286

jarstosign can contain things other than JAR files, but if you do
that, you will need to override includes as well. You can also
populate signdir on your own and set includes appropriately if needed.

Any additional keys are treated passed as additional attributes to the
signjars ant task.

TARGET: wrapper

Purpose: create wrapper scripts for executable JARs that run in the
context of the source tree; useful for testing without installation

Name of control parameter: java.wrapper

name (java.wrapperName): name of wrapper script
mainclass (java.mainClass): name of main class
jarname (java.jarName): name of local JAR file presumably containing
 main class
dir (abuild-java): name of directory into which to write the wrapper
 script
distdir (java.dir.dist): name of directory in which to find the local
 JAR file
classpath (runtime classpath): classpath to include in the wrapper script

The "name" and "mainclass" key must be initialized in order for any
wrapper scripts to be created. The "jarname" key may be set to
include a local JAR file if that JAR is not in the class path.

Any additional keys are ignored.

TARGET: package-war

Purpose: create WAR files

Name of control parameter: java.packageWar

contains default archive keys plus the following:

warname (java.warName): name of WAR file
webxml (java.webxml): path to the web.xml file
webdirs (java.dir.webContent + java.dir.generatedWebContent): web
 content directories
extrawebdirs (java.dir.extraWebContent as list): additional web
 content directories
webinfdirs (java.dir.webinf + java.dir.generatedWebinf): WEB-INF
 directories
extrawebinfdirs (java.dir.extraWebinf as list): additional WEB-INF
 directories
signedjars (java.dir.signedJars): directory containing signed JARS to

Online Help Files

287

 include at the root of the WAR file
libfiles (java.warLibJars as list): JAR files to include in the WAR
 under WEB-INF/lib

Unlike other high level archives, the default package classpath is not
used by default for any purpose. In order to get JAR files into the
WAR file, they must either be in the "signedjars" directory or they
must be listed in the "libfiles" key. A typical WAR file will list
all the JARs it wants at the root of the archive in the
java.jarsToSign parameter and all those it wants in its WEB-INF/lib
directory in the java.warLibJars parameter. Since the package-war
target depends on the sign-jars target, this will cause signed
versions of the JARs to get appropriately included in the right place.

The "warname" and "webxml" parameters must be set in order for this
target to do anything.

Any additional keys are treated passed as additional attributes to the
war ant task.

TARGET: package-high-level-archive

Purpose: create high-level JAR-like archives that may contain other
archives; one example of what you would use this for would be creation
of RAR files

Name of control parameter: java.packageHighLevelArchive

contains default archive keys plus the following:

highlevelarchivename (java.highLevelArchiveName): the name of the
 archive to create
filestopackage (package classpath): additional files to include at
 the root of the archive

The "highlevelarchivename" key must have a value in order for this
target to do anything. The default behavior is to include all the
files in the abuild.classpath interface variable in the higher level
archive. You can use the filestopackage key to include other files,
which don't have to be archives. You can also make such files appear
by having them be in src/resources or abuild-java/src/resources, but
using filestopackage can avoid having to copy them from other
locations.

Any additional keys are treated passed as additional attributes to the
jar ant task.

TARGET: package-ear

Purpose: create EAR files

Online Help Files

288

Name of control parameter: java.packageEar'

contains default archive keys *except classesdir* plus the following:

earname (java.earName): the name of the EAR file
appxml (java.appxml): path to the application.xml file
filestopackage (package classpath): additional files to include at
 the root of the archive

The "earname" and "appxml" keys must have values in order for this
target to do anything. The default behavior is to include all the
files in the abuild.classpath interface variable in the EAR file. You
can use the filestopackage key to include files other files, which
don't have to be archives. You can also make such files appear by
having them be in src/resources or abuild-java/src/resources, but
using filestopackage can avoid having to copy them from other
locations.

Any additional keys are treated passed as additional attributes to the
ear ant task.

TARGET: test-junit

Purpose: run JUnit test suites

Name of control parameter: java.junit

testsuite: (java.junitTestsuite): name of a class containing a JUnit
 test suite
batchincludes (java.junitBatchIncludes): pattern matching classes in
 the classesdir in which to find JUnit test suites
batchexcludes (java.junitBatchExcludes): pattern to filter out classes
 in the classes directory from being searched for JUnit test
 suites
classpath (runtime classpath): classpath during test suite run
classesdir (java.dir.classes): directory searched for classes
 containing test suites
distdir (java.dir.dist): directory containing local archives; all JAR
 files in this directory are added to the classpath
junitdir (java.dir.junit): directory in which to write the XML test
 results
reportdir (java.dir.junitHtml): directory in which to write the HTML
 JUnit report
printsummary (yes): passed as an attribute to junit
haltonfailure (yes): passed as an arguments to junit
fork (yes): passed as an arguments to junit

At least one of "testsuite" or "batchincludes" must be set for this to
do anything. This target runs JUnit test suites and generates a
report. A report will be generated even if the tests fail. This does
not interfere with the affect of haltonfailure.

Online Help Files

289

Any additional keys are treated passed as additional attributes to the
junit ant task.

TARGET: javadoc

Purpose: generate javadoc documentation

Name of control parameter: java.javadoc

Doctitle (java.javadocTitle)
Windowtitle (java.javadocTitle)
srcdirs (java.dir.src + java.dir.generatedSrc)
extrasrcdirs (java.dir.extraSrc as list)
classpath (compile classpath)
access (java.doc.accessLevel if set, or 'protected')
destdir (java.dir.generatedDoc)

All keys above plus any additional ones are passed to as arguments to
the javadoc ant task with the exception of srcdirs and extrasrcdirs.
Those are combined and passed as the "sourcepath" attribute.

At least one source directory must exist for this target to do
anything.

E.9. abuild --help rules rule:autoconf

** Help for users of RULES=autoconf **

These rules can be used by build items that require some
autoconf-based configuration either internally for to provide
information for their users.

Note: there have been some problems reported with autoconf rules in
parallel builds (with --make-jobs). It is recommended that you place

attributes: serial

in the Abuild.conf of build items that use autoconf rules.

In order for these rules to work, the following conventions must be
followed:

 - The configure input file must be called configure.ac

 - If the AUTOCONFIGH variable is defined, configure.ac must include
 the statement AC_CONFIG_HEADERS([header.h]) where header.h is the
 value of the AUTOCONFIGH. The header file must be named in such a
 way as to avoid naming clashes with those created by other build
 items.

Online Help Files

290

 - Any custom m4 macros used by the configure.ac script are in a
 directory called m4 and end with the extension .m4

The following variables may be defined in Abuild.mk:

 AUTOFILES: must be set to the list of files that appear in
 AC_CONFIG_FILES in configure.ac

 AUTOCONFIGH: must be set to the name of the header file in
 AC_CONFIG_HEADERS in configure.ac

Additionally, the following variable may be set if needed:

 CONFIGURE_ARGS: additional arguments to be passed to ./configure

** Help for Abuild.interface for autoconf build items **

Generally, Abuild.interface files for autoconf-based build items will
assign to INCLUDES for the benefit of any C/C++ build items that use
this. See help for the ccxx rule set for details. It is also common
for autoconf-based build items to generate an autoconf.interface file
to be declared in Abuild.interface as an autofile. This allows
additinal variables to be set based on the output of autoconf.

E.10. abuild --help rules rule:ccxx

** Help for users of RULES=ccxx **

Variables to be set in Abuild.mk:

 TARGETS_lib := lib1 lib2 ...
 TARGETS_bin := bin1 bin2 ...
 SRCS_lib_lib1 := lib1-src1.cpp lib1-src2.c ...
 SRCS_lib_lib2 := lib2-src1.cpp lib2-src2.c ...
 SRCS_bin_bin1 := bin1-src1.cpp bin1-src2.c ...
 SRCS_bin_bin2 := bin2-src1.cpp bin2-src2.c ...

Note that no file should be listed as belonging to more than one
target. Doing so will result in a cryptic make message about
redefinition of a rule. If the same source file is needed by more
than one target, put it in a library target. All bin targets
automatically link with (and depend upon) all lib targets defined in a
given Abuild.mk

Note that the targets are just base names. For example, the library
target "moo" might generate libmoo.a on a UNIX system and moo.lib on a
Windows system.

Each library and executable target gets its own corresponding list of

Online Help Files

291

sources. Sources may consist of C or C++ files ending in .c, .cc, or
.cpp. Files ending with .c are compiled as C sources. Files ending
with .cc or .cpp are compiled as C++ sources.

The following additional variables may also be set or
appended to:

 XCPPFLAGS - additional flags passed to the preprocessor, C compiler,
 and C++ compiler (but not the linker)

 XCFLAGS - additional flags passed to the C compiler, C++ compiler,
 and linker

 XCXXFLAGS - additional flags passed to the C++ compiler and linker

 XLINKFLAGS - additional flags passed to the linker

 DFLAGS - debug flags passed to the processor, compilers, and linker

 OFLAGS - optimization flags passed to the processor, compilers, and
 linker

 WFLAGS - warning flags passed to the processor, compilers, and
 linker

Each of the above variables also has a file-specific version. For the
X*FLAGS variables, the file-specific values are added to the general
values. For DFLAGS, OFLAGS, and WFLAGS, the file-specific values
replace the general vales. For example, setting XCPPFLAGS_File.cc
will cause the value of that variable to be added to the preprocessor,
C compiler and C++ compiler invocations for File.cc. File-specific
versions of XCPPFLAGS, XCFLAGS, and XCXXFLAGS are used only for
compilation and, if appropriate, preprocessing of those specific
files. They are not used at link time. The file-specific versions of
DFLAGS, OFLAGS, and WFLAGS *override* the default values rather than
supplementing them. This makes it possible to completely change
debugging flags, optimization flags, or warning flags for specific
source files. For example, if Hardware.cc absolutely cannot be
compiled with any optimization, you could set OFLAGS_Hardware.cc to
the empty string to suppress optimization on that file regardless of
the value of OFLAGS.

By default, library code is compiled as position independent code if
supported by the compiler. This enables it to be included in static
or shared libraries. If the variable NOPIC_File.cc is set, then
File.cc will not be compiled as position independent code. Use of
this option would be appropriate only in extreme cases where the
negligible performance hit of using PIC would be a problem.

To create a shared library instead of a static library for a given
library target, define the variable

 SHLIB_libname := major minor revision

Online Help Files

292

where major, minor, and revision are the major version number, minor
version number, and revision number of the shared library version. If
your intention is to build a versionless shared library object file
(such as one to be used as a dynamically loadable module), set
SHLIB_libname to the empty string.

By default, all shared libaries and executable targets will be linked
using the C++ compiler. To force a program or shared library to be
linked as a C program, set the variable LINK_AS_C to a non-empty
value. This applies to all shared libraries and executables declared
in the Abuild.mk file.

If the variable LINKWRAPPER is set, it should contain a command that
will be prepended to each link step. This is useful for running
programs such as purify and quantify which wrap the link step in this
fashion.

Any source file ending with .ll.cc or .ll.cpp is generated from the
corresponding .ll using flex to generate C++ code. Any source file
ending with .l.c is generated from the corresponding .l file using lex
to generate C code. Using .fl.cc, .fl.cpp, or .fl.c will force the
use of flex rather than lex.

Any source file of the form FlexLexer.something.cc will be generated
with flex from something.fl using the -+ option to a C++ parser class.

Any source file of the form something.tab.cc will be generated with
bison from something.yy.

Any source file ending of the form base_rpc_xdr.c, base_rpc_svc.c, or
base_rpc_clnt.c is automatically generated along with base_rpc.h from
base.x using rpcgen.

The special target ccxx_debug can be used to print the values of the
INCLUDES, LIBDIRS, and LIBS and can be useful for debugging.

** Help for Abuild.interface for C/C++ build items **

Abuild.interface files for C/C++ build items are expected to assign to
the following variables:

 INCLUDES -- list of directories to add to the include path
 LIBDIRS -- list of directories to add to the library path
 LIBS -- list of libraries to link against

Note that LIBS just includes the library basenames as with the
TARGETS_lib variable used in Abuild.mk.

The following additional variables may also be assigned to:

 XCPPFLAGS
 XCFLAGS
 XCXXFLAGS
 XLINKFLAGS

Online Help Files

293

When using these variables, be careful to avoid code that is
compiler-dependent. If necessary, make the assignments conditinal on
values of the ABUILD_PLATFORM_* variables.

E.11. abuild --help rules toolchain:gcc

** Help for users of the "gcc" compiler **

The gcc toolchain uses the unix_compiler toolchain behind the scenes.
You generally shouldn't need to do anything special to use the gcc
compiler. It is the compiler used on abuild's default platform on
UNIX systems. Here are a few notes:

 * ABUILD_FORCE_32BIT and ABUILD_FORCE_64BIT will cause -m32 and -m64
 respectively to be added to all compilation commands. It is up to
 you to make sure you only use these variables when those flags
 work.

 * The gcc compiler support file assumes "ar cru" and "ranlib" for
 library creation. This may not always be correct on some
 platforms.

 * The gcc compiler support file uses -fPIC for creating position
 independent code and passes -shared to the linker for creating
 shared libraries. This may not work on all platforms and is
 probably wrong for platforms on which gcc is not configured to use
 the gnu linker.

E.12. abuild --help rules toolchain:mingw

** Help for users of the "mingw" compiler **

Abuild's mingw support is incomplete. At present, it is implemented
using Cygwin's gcc or g++ with the -mno-cygwin option.

There are a few known problems. Since abuild itself is a Windows
application but make and gcc are both provided by Cygwin, absolute
paths are not portable between the two systems. This means that
abuild's mingw support will almost surely not work if there are any
absolute paths in your build or if there are any build items that span
drive letters. However, for simple builds, it will probably work fine
and generate executables that don't depend on Cygwin at runtime.

Because of the incomplete nature of mingw support, you must set the
environment variable MINGW=1 in order for abuild to make the mingw
compiler available as a platform choice.

Online Help Files

294

E.13. abuild --help rules toolchain:msvc

** Help for users of the "msvc" compiler **

The "msvc" compiler provides support for Microsoft Visual C++. You
are required to have your environment set up for use of the compiler
on the command line. There's usually a shortcut that creates a shell
set up in this way, and there is a batch file that does it as well.
For details, consult your Visual C++ documentation. There is also
some discussion in the abuild manual.

As of the release of abuild 1.1, the msvc compiler support is known to
work with Visual C++ .NET 2003, .NET 2005, and .NET 2008. Both full
enterprise and "express" versions have been tested.

We support building both static libraries and shared libraries.
Abuild creates DLL files for shared libraries. Any version number
information provided in the SHLIB_libname variable is ignored.

By default, we compile with /Zi for all compiles. /Zi enables
debugging and causes debugging information to be written to the .pdb
file. We have observed that cl has trouble with long path names when
invoked without /Zi. Microsoft support suggests that we should use
/Zi for all builds, including release builds. See
http://msdn.microsoft.com/en-us/library/xe4t6fc1.aspx for additional
discussion.

You can override this behavior by changing the value of
MSVC_GLOBAL_FLAGS. See make/toolchains/msvc.mk for additional
details.

There are two additional variables that you can configure:

 MSVC_MANAGEMENT_FLAGS (default /EHsc)
 MSVC_RUNTIME_FLAGS (default /MD)

You can build for .NET by setting MSVC_MANAGEMENT_FLAGS /clr.

You can build executables that link the runtime environment
statically, thus avoiding a runtime dependency on MSVCRT*.dll, by
setting MSVC_RUNTIME_FLAGS to /MT.

We automatically add "d" to the end of MSVC_RUNTIME_FLAGS when
building a debugging executable.

If a manifest file is created when building a DLL or executable, we
automatically run mt -manifest to embed the manifest file.

Online Help Files

295

E.14. abuild --help rules
toolchain:unix_compiler
The "unix_compiler" toolchain is not a real toolchain intended to be
used directly by end users. Instead, it is intended for use by
compiler toolchain support authors. For details of its use, please
look at make/toolchains/unix_compiler.mk itself. To study an example,
refer to make/toolchains/gcc.mk.

296

Appendix F. --dump-data Format
The --dump-data option outputs all the information abuild knows about the build trees after reading all the Abuild.conf
files and performing all of its validations. Its output is in an XML format that corresponds to the following DTD.
Comments in the DTD describe the meanings of the fields. The DTD may be found in doc/abuild_data.dtd in the abuild
distribution. For additional ways to use the build graph output, see also Chapter 32, Sample XSL-T Scripts, page 214.

When there are no errors, the --dump-data output always presents build trees and build items such that no dependency
reference is ever made to an item that has not already been seen. (This does not apply to items referenced by build-
also since no dependency relationship is implied in that case.) When there are errors, the errors attribute to the abuild-
data element will be present and will have the value 1. In this case, this guarantee does not apply as the output may
contain circular dependencies, unknown build items, etc.

The contents of the abuild_data.dtd file are included here for reference.

<!-- This DTD describes the format of abuild's dump-data output. -->
<!-- Inline comments explain the details. The file is called -->
<!-- abuild_data.dtd instead of abuild-data.dtd so we don't -->
<!-- accidentally ignore it because it matches the pattern -->
<!-- abuild-* (like abuild output directories). -->

<!-- By convention, we use "0" or "1" for boolean values. Some -->
<!-- boolean values are optional. In this case, omitted always -->
<!-- means "0". -->
<!ENTITY % boolean "(0|1)">

<!-- Whenever the target-type attribute appears, it may only -->
<!-- have one of these values. -->
<!ENTITY % target-type "(all|platform-independent|object-code|java)">

<!-- The version attribute is always "2". We will only -->
<!-- increment this if there is a change to the output such that -->
<!-- previously valid data is either no longer valid or is valid -->
<!-- but has different semantics. The version attribute was -->
<!-- incremented from "1" when a new build tree structure was -->
<!-- introduced in version 1.1. Adding new attributes with -->
<!-- default values, optional attributes, or optional elements -->
<!-- will not cause the version number to be increased. Code -->
<!-- that reads this output should be prepared to accept and -->
<!-- ignore unknown attributes or elements. The errors -->
<!-- attribute is present and has the value "1" whenever abuild -->
<!-- has detected errors. In this case, normal guarantees about -->
<!-- output consistency do not apply, and the output may contain -->
<!-- references to unknown build items, platform types, flags, -->
<!-- traits, etc. Abuild will still make every effort to -->
<!-- produce useful and coherent data and will also always -->
<!-- produce XML output that parses against this DTD. -->
<!ELEMENT abuild-data (platform-data, supported-traits?, forest+)>
<!ATTLIST abuild-data
 version CDATA #REQUIRED
 errors %boolean; #IMPLIED
>

--dump-data Format

297

<!-- The platform-data element provides information about all -->
<!-- platform types known and any platforms they contain. When -->
<!-- it appears directly under abuild-data, it refers to the -->
<!-- built-in platforms and platform types. When it appears -->
<!-- under build-tree, it refers to the platforms known to that -->
<!-- tree. This would include built-in platform information as -->
<!-- well as any platform information added by a plugin in that -->
<!-- tree. -->
<!ELEMENT platform-data (platform-type+)>

<!-- The platform-type element describes a platform type. When -->
<!-- used inside of platform-data, it gives the name of the -->
<!-- platform type, its target type, and the list of platforms -->
<!-- it contains. When used inside a build item, it just lists -->
<!-- a platform type on which that build item could be built. -->
<!ELEMENT platform-type (platform*)>
<!ATTLIST platform-type
 name CDATA #REQUIRED
 parent CDATA #IMPLIED
 target-type %target-type; #IMPLIED
>
<!-- The selected attribute is present only when platform -->
<!-- appears inside of platform-type. In this case, it has the -->
<!-- value "1" when items in that platform type would always be -->
<!-- built on that platform (based on platform selection -->
<!-- criteria) and "0" otherwise. -->
<!ELEMENT platform EMPTY>
<!ATTLIST platform
 name CDATA #REQUIRED
 selected %boolean; #IMPLIED
>

<!-- Every build tree includes a list of traits that are allowed -->
<!-- on any items that appear natively to that build tree. -->
<!-- There is also an overall list of supported traits that are -->
<!-- available from the command line. This element lists all -->
<!-- traits when it appears under abuild-data and the traits -->
<!-- defined by any of the build tree or its externals when it -->
<!-- appears under build-tree. -->
<!ELEMENT supported-traits (supported-trait+)>
<!ELEMENT supported-trait EMPTY>
<!ATTLIST supported-trait
 name CDATA #REQUIRED
>

<!-- forests are given IDs so that they may be referred to by -->
<!-- other forests and by build items. forests are always -->
<!-- output in an order such that no forest refers to a later -->
<!-- forest. Although not enforced by the DTD, readers may rely -->
<!-- on this if it is helpful. This constraint is satisfied -->
<!-- even with the errors attribute of the top-level element is -->
<!-- set. -->
<!ELEMENT forest (backing-area*, deleted-trees?, deleted-items?,

--dump-data Format

298

 global-plugins?, build-tree+)>
<!ATTLIST forest
 id ID #REQUIRED
 absolute-path CDATA #REQUIRED
>

<!-- Each backing-area element contains a reference to a backing -->
<!-- area. It is omitted if there are no backing areas. -->
<!ELEMENT backing-area EMPTY>
<!ATTLIST backing-area
 forest IDREF #REQUIRED
>

<!-- The deleted-trees and deleted-items elements contain a list -->
<!-- of build trees and build items that were deleted in this -->
<!-- forest. This information comes from Abuild.backing. -->
<!ELEMENT deleted-trees (deleted-tree+)>
<!ELEMENT deleted-tree EMPTY>
<!ATTLIST deleted-tree
 name CDATA #REQUIRED
>
<!ELEMENT deleted-items (deleted-item+)>
<!ELEMENT deleted-item EMPTY>
<!ATTLIST deleted-item
 name CDATA #REQUIRED
>

<!-- The global-plugins element contains a list of all plugins -->
<!-- that are declared as global in the forest. Such plugins -->
<!-- will also appear in the plugins element of every tree. -->
<!ELEMENT global-plugins (plugin+)>

<!-- One build-tree element appears for each build tree. -->
<!-- build-trees are output in dependency order such that no -->
<!-- build tree will depend on another build tree that has not -->
<!-- already been output. Readers may rely on this behavior if -->
<!-- it is helpful, unless the errors attribute of the top level -->
<!-- element is set. The home-forest and backing-depth -->
<!-- attributes have the same meaning as with build-item. See -->
<!-- its comment for a description. -->
<!ELEMENT build-tree (platform-data, supported-traits?, plugins?,
 declared-tree-dependencies?,
 expanded-tree-dependencies?,
 omitted-tree-dependencies?,
 build-item+)>
<!ATTLIST build-tree
 name CDATA #REQUIRED
 absolute-path CDATA #REQUIRED
 home-forest IDREF #REQUIRED
 backing-depth CDATA #REQUIRED
>

<!-- The plugins element contains a list of build items that are -->
<!-- declared as plugins in the tree. This includes any global -->

--dump-data Format

299

<!-- plugins. -->
<!ELEMENT plugins (plugin+)>
<!ELEMENT plugin EMPTY>
<!ATTLIST plugin
 name CDATA #REQUIRED
>

<!-- declared-tree-dependencies contains the list of direct -->
<!-- dependencies in the order in which they were declared in -->
<!-- the Abuild.conf file. Additionally, any tree declared as a -->
<!-- global tree dependency will be included here as well. -->
<!ELEMENT declared-tree-dependencies (tree-dependency+)>

<!-- expanded-tree-dependencies contains the list of recursively -->
<!-- expanded tree dependencies in sorted order from least to -->
<!-- most dependent. In other words, if A depends on B and B -->
<!-- depends on C, A's expanded-tree-dependencies contains C, -->
<!-- and then B. -->
<!ELEMENT expanded-tree-dependencies (tree-dependency+)>

<!-- omitted-tree-dependencies contains the list of tree -->
<!-- dependencies that were declared optional and were not -->
<!-- present. -->
<!ELEMENT omitted-tree-dependencies (tree-dependency+)>

<!-- The tree-dependency element represents a single tree -->
<!-- dependency. -->
<!ELEMENT tree-dependency EMPTY>
<!ATTLIST tree-dependency
 name CDATA #REQUIRED
>

<!-- One build-item element appears for each build-item. -->
<!-- build-items are output in dependency order such that no -->
<!-- build item will depend on another build item that has not -->
<!-- already been output. Readers may rely on this behavior if -->
<!-- it is helpful, unless the errors attribute of the top level -->
<!-- element is set. Note that there is no expectation of -->
<!-- dependency ordering for the build-also-items element since -->
<!-- the build-also key in Abuild.conf implies no dependency -->
<!-- relationship. -->

<!-- The attributes have the following meanings: -->

<!-- name: the name of the build item -->

<!-- description: an optional description of the build item for -->
<!-- informational purposes only -->

<!-- home-forest: a reference to the forest from which the build -->
<!-- item is resolved -->

<!-- absolute-path: the absolute path of the build item -->

--dump-data Format

300

<!-- backing-depth: the number of backing areas that have to be -->
<!-- crossed to reach this build item -->

<!-- has-shadowed-references: "1" if this build item uses any -->
<!-- plugins or dependencies that are shadowed by a tree that -->
<!-- backs to this item's tree. Items with shadowed references -->
<!-- are not able to be built. -->

<!-- visible-to: the scope at which this item is visible; -->
<!-- corresponds to the visible-to key in the Abuild.conf. If -->
<!-- absent, default visibility applies. -->

<!-- target-type: the target type of this build item -->

<!-- is-plugin: true if the item is used as a plugin by at least -->
<!-- one tree -->

<!-- serial true if the item is declared to be serial; absent -->
<!-- otherwise. -->

<!ELEMENT build-item (build-also-trees?, build-also-items?,
 declared-dependencies?, expanded-dependencies?,
 omitted-dependencies?,
 platform-types?, buildable-platforms?,
 supported-flags?, traits?)>
<!ATTLIST build-item
 name CDATA #REQUIRED
 description CDATA #IMPLIED
 home-forest IDREF #REQUIRED
 absolute-path CDATA #REQUIRED
 backing-depth CDATA #REQUIRED
 has-shadowed-references %boolean; "0"
 visible-to CDATA #IMPLIED
 target-type %target-type; #REQUIRED
 is-plugin %boolean; #REQUIRED
 serial %boolean; #IMPLIED
>

<!-- build-also-trees and build-also-items contain the list of -->
<!-- build trees/items named in the build-also key. Each item -->
<!-- appears in a nested build-also element. There is no -->
<!-- guarantee that the build item has appeared. Build-also -->
<!-- trees as well as the desc and with-tree-deps options were -->
<!-- added in abuild 1.1.4. For clarity, is-tree="1" always -->
<!-- appears with build also trees, and for backward -->
<!-- compatibility, the attribute is omitted for build also -->
<!-- items. -->
<!ELEMENT build-also-items (build-also+)>
<!ELEMENT build-also-trees (build-also+)>
<!ELEMENT build-also EMPTY>
<!ATTLIST build-also
 name CDATA #REQUIRED
 is-tree %boolean; "0"
 desc %boolean; "0"

--dump-data Format

301

 with-tree-deps %boolean; "0"
>

<!-- declared-dependencies contains the list of direct -->
<!-- dependencies in the order in which they were declared in -->
<!-- the Abuild.conf file. Any flags associated with direct -->
<!-- dependencies appear in a nested flag element. -->
<!ELEMENT declared-dependencies (dependency+)>

<!-- expanded-dependencies contains the list of recursively -->
<!-- expanded dependencies in sorted order from least to most -->
<!-- dependent. In other words, if A depends on B and B depends -->
<!-- on C, A's expanded-dependencies contains C, and then B. -->
<!-- Note that flags appear only with direct dependencies, so -->
<!-- nested dependencies here will never have flag attributes. -->
<!ELEMENT expanded-dependencies (dependency+)>

<!-- omitted-dependencies contains the names of any dependencies -->
<!-- that were declared "optional" and that do not exist. Such -->
<!-- items are not listed in declared-dependencies or -->
<!-- expanded-dependencies. Additionally, if they were listed -->
<!-- as referent items on any traits, they will have been -->
<!-- removed from there as well. -->
<!ELEMENT omitted-dependencies (dependency+)>

<!-- The dependency element represents a single dependency. For -->
<!-- direct dependencies declared with flags, the dependency -->
<!-- element will contain nested flag elements. Dependencies -->
<!-- that appear inside of expanded-dependencies never contain -->
<!-- flags elements since flags apply only to direct -->
<!-- dependencies. If a dependency is declared with a specific -->
<!-- platform type, the platform type appears in the -->
<!-- "platform-type" attribute. -->
<!ELEMENT dependency (flag*)>
<!ATTLIST dependency
 name CDATA #REQUIRED
 platform-type CDATA #IMPLIED
>

<!-- The flag element represents a single dependency flag. -->
<!ELEMENT flag EMPTY>
<!ATTLIST flag
 name CDATA #REQUIRED
>

<!-- platform-types contains the list of platform types in the -->
<!-- order in which they appeared in the Abuild.conf. -->
<!ELEMENT platform-types (platform-type+)>

<!-- buildable-platforms contains the list of platforms on which -->
<!-- this item could be built. -->
<!ELEMENT buildable-platforms (platform+)>

<!-- supported-flags contains a list of flags that are supported -->

--dump-data Format

302

<!-- by this build item. -->
<!ELEMENT supported-flags (supported-flag+)>
<!ELEMENT supported-flag EMPTY>
<!ATTLIST supported-flag
 name CDATA #REQUIRED
>

<!-- The traits element contains a list of traits that this -->
<!-- build item has. Any referent build items appear in nested -->
<!-- trait-referent elements. -->
<!ELEMENT traits (trait+)>
<!ELEMENT trait (trait-referent*)>
<!ATTLIST trait
 name CDATA #REQUIRED
>
<!ELEMENT trait-referent EMPTY>
<!ATTLIST trait-referent
 name CDATA #REQUIRED
>

303

Appendix G. --dump-interfaces Format
The --dump-interface option causes abuild to create various XML output files exposing everything abuild knows
about the interface system before and after processing each build item. For details, please refer to Section 17.6, “De-
bugging Interface Issues”, page 94. The format of those files conforms to an XML DTD. Comments in the DTD de-
scribe how to interpret the elements and attributes. The DTD may be found in doc/interface_dump.dtd in the abuild
distribution. Its contents are included here for reference.

<!-- This DTD describes the format of the output of the files -->
<!-- created by abuild dump-interfaces. Inline comments explain -->
<!-- the details. The reader is assumed to have advanced -->
<!-- familiarity with the interface system as described in the -->
<!-- documentation. -->

<!-- All location attributes have values of the form -->
<!-- filename:lineno:colno. Some operations are performed -->
<!-- internally by abuild. In those cases, location will -->
<!-- something including the word "internal" inside square -->
<!-- brackets. -->

<!-- The version attribute is always "1". We will only -->
<!-- increment this if there is a change to the output such that -->
<!-- previously valid data is either no longer valid or is valid -->
<!-- but has different semantics. Adding new attributes with -->
<!-- default values, optional attributes, or optional elements -->
<!-- will not cause the version number to be increased. Code -->
<!-- that reads this output should be prepared to accept and -->
<!-- ignore unknown attributes or elements. The item-name and -->
<!-- item-platform attributes describe the name and platform of -->
<!-- the item whose interface this is. -->
<!ELEMENT interface (variable*)>
<!ATTLIST interface
 version CDATA #REQUIRED
 item-name CDATA #REQUIRED
 item-platform CDATA #REQUIRED
>

<!-- One variable element exists for each variable that has been -->
<!-- declared. The attributes' values are self-explanatory. -->
<!ELEMENT variable (reset-history?, assignment-history?)>
<!ATTLIST variable
 name CDATA #REQUIRED
 type CDATA #REQUIRED
 target-type CDATA #REQUIRED
 declaration-location CDATA #REQUIRED
>

<!-- Each time a variable is reset, an entry is recorded in the -->
<!-- reset history. No assignments prior to the most recent -->
<!-- reset will be output, so the reset history can be used to -->
<!-- find earlier information about a variable. -->
<!ELEMENT reset-history (reset+)>

--dump-interfaces Format

304

<!-- The attributes of the reset element refer to the build item -->
<!-- whose interface performed the reset operation. -->
<!ELEMENT reset EMPTY>
<!ATTLIST reset
 item-name CDATA #REQUIRED
 item-platform CDATA #REQUIRED
 location CDATA #REQUIRED
>

<!-- Each time an assignment is made to a variable, there is an -->
<!-- entry in the assignment history. All assignments to a -->
<!-- variable are shown, including those that do not contribute -->
<!-- to the value of a variable. Remember that, for scalar -->
<!-- variables, only the last assignment affects the value of -->
<!-- the variable; and that for list variables, each assignment -->
<!-- is appended or prepended to prior ones as determined by the -->
<!-- list type. Also, variable assignments are filtered at -->
<!-- runtime based on flags. -->
<!ELEMENT assignment-history (assignment+)>

<!-- The item-name, item-platform, and location attributes of -->
<!-- the assignment element refer to the build item whose -->
<!-- interface performed the assignment. Remaining attributes -->
<!-- apply to the assignment and are self-explanatory. -->
<!ELEMENT assignment (value*)>
<!ATTLIST assignment
 assignment-type CDATA #REQUIRED
 flag CDATA #IMPLIED
 item-name CDATA #REQUIRED
 item-platform CDATA #REQUIRED
 location CDATA #REQUIRED
>
<!ELEMENT value EMPTY>
<!ATTLIST value
 value CDATA #REQUIRED
>

305

Appendix H. --dump-build-graph
Format
The --dump-build-graph option causes abuild to output XML data showing the internal build graph as described in
Section 33.6, “Construction of the Build Graph”, page 218. The format of those files conforms to an XML DTD. Com-
ments in the DTD describe how to interpret the elements and attributes. The DTD may be found in doc/build_graph.dtd
in the abuild distribution. Its contents are included here for reference.

<!-- This DTD describes the format of the output of the files -->
<!-- created by abuild dump-build-graph. Inline comments -->
<!-- explain the details. -->

<!-- The version attribute is always "1". We will only -->
<!-- increment this if there is a change to the output such that -->
<!-- previously valid data is either no longer valid or is valid -->
<!-- but has different semantics. Adding new attributes with -->
<!-- default values, optional attributes, or optional elements -->
<!-- will not cause the version number to be increased. Code -->
<!-- that reads this output should be prepared to accept and -->
<!-- ignore unknown attributes or elements. The item-name and -->
<!-- item-platform attributes describe the name and platform of -->
<!-- the item whose interface this is. -->
<!ELEMENT build-graph (item*)>
<!ATTLIST build-graph
 version CDATA #REQUIRED
>

<!-- One item element appears for each platform built for each -->
<!-- item. It corresponds to the item/platform pair. The -->
<!-- attributes are self-explanatory. -->
<!ELEMENT item (dep*)>
<!ATTLIST item
 name CDATA #REQUIRED
 platform CDATA #REQUIRED
>

<!-- One dep element appears for each direct dependency of each -->
<!-- item/platform pair. The attributes are self-explanatory. -->
<!ELEMENT dep EMPTY>
<!ATTLIST dep
 name CDATA #REQUIRED
 platform CDATA #REQUIRED
>

306

Appendix I. The ccxx.mk File
Here we include a complete copy of rules/object-code/ccxx.mk.

This makefile rules fragment supports compilation of C and C++ code
into static libraries and dynamically linked executables. Shared
libraries are not presently supported but will be in the future.
Please see the file make/README.shared-libraries for details.
#
Please see ccxx-help.txt for details on how to use these rules.

Notes to implementors

CCXX_TOOLCHAIN contains the name of a makefile fragment (without the
.mk; loaded from abuild-specified search path) that defines the
functions that these rules use to perform actual compiles. The best
place to learn about how these work, in addition to carefully
reading these notes, is to look at the built-in compiler support
files included with abuild. gcc.mk is a good UNIX example, and
msvc.mk is a good Windows example. The compiler support file
provide the following:

.LIBPATTERNS: gnu make variable which must contain patterns to
match library names so that dependencies on -llib will work.

OBJ: the suffix of non-library object files

LOBJ: the suffix of library object files; may be the same as OBJ

PREPROCESS_c: a command used to invoke the C preprocessor

PREPROCESS_cxx: a command used to invoke the C++ preprocessor

COMPILE_c: a command used to invoke the C compiler

COMPILE_cxx: a command used to invoke the C++ compiler

LINK_c: a command used to invoke the linker for a C program that
uses no C++ libraries

LINK_cxx: a command used to invoke the linker for a C++ program

DFLAGS: default debugging flags

OFLAGS: default optimization flags

WFLAGS: default warning flags

CCXX_GEN_DEPS: if it is possible to make COMPILE_c and COMPILE_cxx
generate correct dependency information as a side effect of

The ccxx.mk File

307

compilation, add the appropriate flags to COMPILE_c and
COMPILE_cxx and set CCXX_GEN_DEPS to @: to suppress the running of
gen_deps. Otherwise, don't set this variable, in which case it
will default to $(GEN_DEPS). Abuild requires dependency files
that contain an empty rule with each object file depending on all
of its dependencies as well as an empty rule for each dependency
that depends on nothing. This way, missing header files will
cause the target to rebuild instead of fail. Our own gen_deps
does this, as does gcc's -MP option.

IGNORE_TARGETS: optional: a list of targets (object files,
libraries, etc.) that should be ignored when determining whether
there are orphan targets.

$(call libname,libbase): a function that returns the full name of
a library from its base. For example, $(call libname,moo) would
typically return libmoo.a on a UNIX system and moo.lib on a
Windows system.

$(call shlibname,libbase,major,minor,revision): a function that
returns the full name of a shared library from its base, major
version, minor version, and revision number. For example, $(call
shlibname,moo,1,2,3) might return libmoo.so.1.2.3 on a UNIX system
and moo1.dll on a Windows system. The version arguments are
optional. Each one must be ignored if the ones before it are
omitted.

$(call binname,binbase): a function that returns the full name of
an executable from its base. For example, $(call binname,moo)
would typically return moo on a UNIX system and moo.exe on a
Windows system.

$(call include_flags,include-dirs): a function that returns
include flags forthe given include directories. This result
should be suitable to passing as flags to the preprocessor and C
or C++ compiler.

$(call make_obj,compiler,pic,flags,src,obj): a function that uses
the given compiler to convert src to obj. The first argument will
always be either $(COMPILE_c) or $(COMPILE_cxx). The second
argument will be 1 if we need position-independent code for shared
libraries (or static libraries that might be linked into shared
libraries) and empty otherwise.

$(call make_lib,objects,libbase): a function that creates a
library with the given base name. Note that libbase has not been
passed to $(libname).

$(call make_bin,linker,compiler-flags,link-flags,objects,lib-dirs,li\
\bs,binbase):
a function that generates an executable file with the given base
name from the given objects linking from libs that are found from
the given libdirs. The first argument will always be either
$(LINK_c) or $(LINK_cxx). Note that that binbase has not been

The ccxx.mk File

308

passed to $(binname). Compiler support implementors are
encouraged to prepend the variable $(LINKWRAPPER) to link
statements. This makes it possible for the user to set
LINKWRAPPER to some program that wraps the link step. Examples of
programs that do this include Purify and Quantify. NOTE: Your
make_bin function should do something with the
WHOLE_lib_$(libname) variables: either it should link in the whole
library or issue an error that it is not supported. See
toolchains/unix_compiler.mk and toolchains/msvc.mk for examples of
each case.
#
$(call make_shlib,linker,compiler-flags,link-flags,objects,lib-dirs,\
\libs,shlibbase,major,minor,revision):
function that creates a library with the given base name. This
function must take the same arguments as make_bin plus the shared
library version information. Compiler support authors are
encouraged to prepend the link statement with $(LINKWRAPPER) as
with make_bin.

When preparing to use a specific toolchain, please see comments in
that toolchain's makefile fragment for any requirements that it may
have.

TARGETS_lib ?=
TARGETS_bin ?=

Make sure the user has asked for some targets.
ifeq ($(words $(TARGETS_lib) $(TARGETS_bin)), 0)
_qtx_dummy := $(call QTC.TC,abuild,ccxx.mk no targets,0)
$(error No ccxx targets are defined)
endif

Separate TARGETS_lib into _TARGETS_static_lib and
_TARGETS_shared_lib
_TARGETS_shared_lib := $(filter-out %:static,$(foreach L,$(TARGETS_lib),\
\(L)(if $(filter undefined,$(origin SHLIB_$(L))),:static)))
_TARGETS_static_lib := $(filter-out $(_TARGETS_shared_lib),$(TARGETS_lib))

Define ccxx_shlibname to call shlibname with the right arguments
define ccxx_shlibname
$(call shlibname,$(1),$(word 1,$(SHLIB_$(1))),$(word 2,$(SHLIB_$(1))),$(\
\word 3,$(SHLIB_$(1))))
endef

Define ccxx_all_shlibnames to get all variants of the shared library name
define ccxx_all_shlibnames
$(sort $(call shlibname,$(1),$(word 1,$(SHLIB_$(1))),$(word 2,$(SHLIB_$(\
\1))),$(word 3,$(SHLIB_$(1)))) \
 $(call shlibname,$(1),$(word 1,$(SHLIB_$(1))),$(word 2,$(SHLIB_$(\
\1))),) \
 $(call shlibname,$(1),$(word 1,$(SHLIB_$(1))),,) \
 $(call shlibname,$(1),,,))

The ccxx.mk File

309

endef

Add each target to the "all" and "clean" rules
_static_lib_TARGETS := $(foreach T,$(_TARGETS_static_lib),$(call libname,$(T)))
_shared_lib_TARGETS := $(foreach T,$(_TARGETS_shared_lib),$(call ccxx_sh\
\libname,$(T)))
_lib_TARGETS := $(_static_lib_TARGETS) $(_shared_lib_TARGETS)
_bin_TARGETS := $(foreach T,$(TARGETS_bin),$(call binname,$(T)))

all:: $(_lib_TARGETS) $(_bin_TARGETS)

Add all local libraries to LIBS and all local library directories to
LIBDIRS.
ifneq ($(words $(TARGETS_lib)),0)
LIBS := $(filter-out $(LIBS),$(_TARGETS_static_lib) $(_TARGETS_shared_li\
\b)) $(LIBS)
LIBDIRS := $(filter-out $(LIBDIRS),.) $(LIBDIRS)
endif

Make sure that the user has provided sources for each target.
_UNDEFINED := $(call undefined_vars,\
 $(foreach T,$(TARGETS_lib),SRCS_lib_$(T)) \
 $(foreach T,$(TARGETS_bin),SRCS_bin_$(T)))
ifneq ($(words $(_UNDEFINED)),0)
_qtx_dummy := $(call QTC.TC,abuild,ccxx.mk undefined variables,0)
$(error The following variables are undefined: $(_UNDEFINED))
endif

Basic compilation functions

DFLAGS ?=
OFLAGS ?=
WFLAGS ?=
XCPPFLAGS ?=
XCFLAGS ?=
XCXXFLAGS ?=
XLINKFLAGS ?=
LINKWRAPPER ?=
LINK_AS_C ?=

ifeq ($(ABUILD_SUPPORT_1_0),1)
 ifneq ($(origin LINK_SHLIBS), undefined)
 ifeq (-$(strip $(LINK_SHLIBS))-,--)
 $(error setting LINK_SHLIBS to an empty value no longer works; overri\
\de LIBS instead)
 else
 $(call deprecate,1.1,LINK_SHLIBS is deprecated; as of version 1.0.3$(\
_comma) abuild always links shared libraries)
 endif
 endif
endif

These functions expand to the complete list of debug, optimization
and warning flags that apply to a specific file. In this case,

The ccxx.mk File

310

file-specific values override general values.

Usage: $(call file_dflags,src)
define file_dflags
$(call value_if_defined,DFLAGS_$(call strip_srcdir,$(1)),$(DFLAGS))
endef

Usage: $(call file_oflags,src)
define file_oflags
$(call value_if_defined,OFLAGS_$(call strip_srcdir,$(1)),$(OFLAGS))
endef

Usage: $(call file_wflags,src)
define file_wflags
$(call value_if_defined,WFLAGS_$(call strip_srcdir,$(1)),$(WFLAGS))
endef

Usage: $(call file_dowflags,src)
define file_dowflags
$(call file_dflags,$(1)) $(call file_oflags,$(1)) $(call file_wflags,$(1))
endef

These functions expand to the complete list of "extra" flags that
apply to a specific file. They are, from general to specific:
XCPPFLAGS, then XCPPFLAGS_file (and similar for CFLAGS and
CXXFLAGS). We use $(call value_if_defined ...) to access the
file-specific variables to avoid the undefined variable warning for
each undefined variable since not defining these is the usual case.

Usage: $(call file_cppflags,src)
define file_cppflags
$(call include_flags,$(INCLUDES) $(SRCDIR) .) $(call file_dowflags,$(1))\
\ $(XCPPFLAGS) $(call value_if_defined,XCPPFLAGS_$(call strip_srcdir,$(1)),)
endef

Usage: $(call file_cflags,src)
define file_cflags
$(call file_cppflags,$(1)) $(XCFLAGS) $(call value_if_defined,XCFLAGS_$(\
\call strip_srcdir,$(1)),)
endef

Usage: $(call file_cxxflags,src)
define file_cxxflags
$(call file_cflags,$(1)) $(XCXXFLAGS) $(call value_if_defined,XCXXFLAGS_\
\$(call strip_srcdir,$(1)),)
endef

Usage: $(call use_pic,src): determines the value of pic to pass to make_obj
define use_pic
$(and $(filter $(call strip_srcdir,$(<)), $(_lib_SRCS)), $(if $(call val\
\ue_if_defined,NOPIC_$(call strip_srcdir,$(<)),),,1))
endef

LANGNAME_c := C

The ccxx.mk File

311

LANGNAME_cxx := C++
CCXX_GEN_DEPS ?= $(GEN_DEPS)
CCCXX_LINKER = $(if $(LINK_AS_C),$(LINK_c),$(LINK_cxx))
Usage: $(call ccxx_compile,language): language = { c | cxx }
define ccxx_compile
 @: $(call QTC.TC,abuild,ccxx.mk ccxx_compile,0)
 @mkdir -p $(dir $@)
 $(CCXX_GEN_DEPS) \
 "$(PREPROCESS_$(1)) $(call file_cppflags,$<)" \
 "$<" "$@" "$*.$(DEP)"
 -$(RM) $@
 @$(PRINT) "Compiling $< as $(LANGNAME_$(1))"
 $(call make_obj,$(COMPILE_$(1)),$(call use_pic,$<), \
 $(call file_$(1)flags,$<),$<,$@)
endef

Usage: $(call ccxx_preprocess,language): language = { c | cxx }
define ccxx_preprocess
 @mkdir -p $(dir $@)
 @$(PRINT) "Preprocessing $< as $(LANGNAME_$(1)) to $@"
 -$(RM) $@
 $(PREPROCESS_$(1)) $(call file_cppflags,$<) $< > $@
endef

Usage: $(call ccxx_make_static_lib,library-base)
define ccxx_make_static_lib
 @: $(call QTC.TC,abuild,ccxx.mk ccxx_make_static_lib,0)
 -$(RM) $(call libname,$(1))
 @$(PRINT) "Creating $(1) library"
 $(call make_lib,$(OBJS_lib_$(1)),$(1))
endef

Usage: $(call ccxx_make_shared_lib,library-base)
define ccxx_make_shared_lib
 @: $(call QTC.TC,abuild,ccxx.mk ccxx_make_shared_lib,0)
 @$(PRINT) "Creating $(1) shared library"
er-out $(_TARGETS_shared_lib),$(LIBS)),$(1),$(word 1,$(SHLIB_$(1))),$(wo\
\rd 2,$(SHLIB_$(1))),$(word 3,$(SHLIB_$(1))))
endef

Usage: $(call ccxx_make_bin,executable-base)
define ccxx_make_bin
 @: $(call QTC.TC,abuild,ccxx.mk ccxx_make_bin,0)
 -$(RM) $(call binname,$(1))
 @$(PRINT) "Creating $(1) executable"
 $(call make_bin,$(CCCXX_LINKER),$(XCFLAGS) $(XCXXFLAGS) $(DFLAGS\
\) $(OFLAGS) $(WFLAGS),$(XLINKFLAGS),$(OBJS_bin_$(1)),$(LIBDIRS),$(LIBS),$(1))
endef

c_to_o = $(call ccxx_compile,c)
cxx_to_o = $(call ccxx_compile,cxx)
lib_c_to_o = $(c_to_o)
bin_c_to_o = $(c_to_o)
lib_cxx_to_o = $(cxx_to_o)

The ccxx.mk File

312

bin_cxx_to_o = $(cxx_to_o)
c_to_i = $(call ccxx_preprocess,c)
cxx_to_i = $(call ccxx_preprocess,cxx)

For each SRCS_lib_x and SRCS_bin_x, create corresponding OBJS_lib_x
and OBJS_bin_x by transforming all .c, .cc, and .cpp file names to
object file names.

$(foreach T,$(TARGETS_lib),\
 $(eval OBJS_lib_$(T) := \
 $(call x_to_y,c,$(LOBJ),SRCS_lib_$(T)) \
 $(call x_to_y,cc,$(LOBJ),SRCS_lib_$(T)) \
 $(call x_to_y,cpp,$(LOBJ),SRCS_lib_$(T))))
$(foreach T,$(TARGETS_bin),\
 $(eval OBJS_bin_$(T) := \
 $(call x_to_y,c,$(OBJ),SRCS_bin_$(T)) \
 $(call x_to_y,cc,$(OBJ),SRCS_bin_$(T)) \
 $(call x_to_y,cpp,$(OBJ),SRCS_bin_$(T))))

Combine all sources from various bases into types (lib and bin) and
then separate by suffix. These variables are used for static pattern
rules to invoke the correct compilation steps for files based on
suffix and target type.

_lib_SRCS := $(sort $(foreach T,$(TARGETS_lib),$(SRCS_lib_$(T))))
_bin_SRCS := $(sort $(foreach T,$(TARGETS_bin),$(SRCS_bin_$(T))))
_all_SRCS := $(sort $(_lib_SRCS) $(_bin_SRCS))
_lib_COBJS := $(call x_to_y,c,$(LOBJ),_lib_SRCS)
_lib_CCOBJS := $(call x_to_y,cc,$(LOBJ),_lib_SRCS)
_lib_CPPOBJS := $(call x_to_y,cpp,$(LOBJ),_lib_SRCS)
_bin_COBJS := $(call x_to_y,c,$(OBJ),_bin_SRCS)
_bin_CCOBJS := $(call x_to_y,cc,$(OBJ),_bin_SRCS)
_bin_CPPOBJS := $(call x_to_y,cpp,$(OBJ),_bin_SRCS)
_Cpproc := $(call x_to_y,c,i,_lib_SRCS) $(call x_to_y,c,i,_bin_SRCS)
_CCpproc := $(call x_to_y,cc,i,_lib_SRCS) $(call x_to_y,cc,i,_bin_SRCS)
_CPPpproc := $(call x_to_y,cpp,i,_lib_SRCS) $(call x_to_y,cpp,i,_bin_SRCS)

Make sure ".." doesn't appear in any source file names.
ifneq ($(words $(findstring /../,$(_all_SRCS)) $(filter ../%,$(_all_SRCS))), 0)
_qtx_dummy := $(call QTC.TC,abuild,ccxx.mk ERR .. in srcs,0)
$(error The path component ".." may not appear in any source file names)
endif

Include dependency files for each source file
_lib_OBJS := $(_lib_COBJS) $(_lib_CCOBJS) $(_lib_CPPOBJS)
_bin_OBJS := $(_bin_COBJS) $(_bin_CCOBJS) $(_bin_CPPOBJS)
_all_DEPS := $(call x_to_y,$(LOBJ),$(DEP),_lib_OBJS) \
 $(call x_to_y,$(OBJ),$(DEP),_bin_OBJS)

Remove any extraneous dep files
_extra_deps := $(filter-out $(_all_DEPS),$(wildcard *.$(DEP)))
ifneq ($(words $(_extra_deps)),0)
_qtx_dummy := $(call QTC.TC,abuild,ccxx.mk remove extra deps,0)
DUMMY := $(shell $(PRINT) 1>&2 Removing extraneous $(DEP) files)

The ccxx.mk File

313

DUMMY := $(shell $(RM) $(_extra_deps))
endif

-include $(_all_DEPS)

Define static pattern rules that invoke the proper compilation
function for each object file.

$(_lib_COBJS): %.$(LOBJ): %.c
 $(lib_c_to_o)

$(_lib_CCOBJS): %.$(LOBJ): %.cc
 $(lib_cxx_to_o)

$(_lib_CPPOBJS): %.$(LOBJ): %.cpp
 $(lib_cxx_to_o)

$(_bin_COBJS): %.$(OBJ): %.c
 $(bin_c_to_o)

$(_bin_CCOBJS): %.$(OBJ): %.cc
 $(bin_cxx_to_o)

$(_bin_CPPOBJS): %.$(OBJ): %.cpp
 $(bin_cxx_to_o)

$(_Cpproc): %.i: %.c FORCE
 $(c_to_i)

$(_CCpproc): %.i: %.cc FORCE
 $(cxx_to_i)

$(_CPPpproc): %.i: %.cpp FORCE
 $(cxx_to_i)

Ensure that we can use -llib dependencies properly.
.LIBPATTERNS ?=
$(foreach PAT,$(.LIBPATTERNS),$(eval vpath $(PAT) $(LIBDIRS)))

For each library and executable target, create a rule that makes the
target dependent on its objects. Also make executable targets
depend on the libraries in LIBS, which includes local libraries,
and shared libary targets depend on the static libraries in LIBS.
In addition, we make local executable targets explicitly depend on
local library targets. The reason for doing this as well as adding
the -llib target for local libraries is that make will not try to
build the -llib target if it doesn't exist.
l_LIBS = $(foreach L,$(LIBS),-l$(L))
l_not_local_shared = $(foreach L,$(filter-out $(_TARGETS_shared_lib),$(L\
\IBS)),-l$(L))
$(foreach T,$(_TARGETS_static_lib),\
 $(eval $(call libname,$(T)): $(OBJS_lib_$(T)) ; \
 $(call ccxx_make_static_lib,$(T))))

The ccxx.mk File

314

$(foreach T,$(_TARGETS_shared_lib),\
 $(eval $(call ccxx_shlibname,$(T)): $(OBJS_lib_$(T)) $(l_not_local_sh\
\ared) $(_static_lib_TARGETS); \
 $(call ccxx_make_shared_lib,$(T))))
$(foreach T,$(TARGETS_bin),\
 $(eval $(call binname,$(T)): $(OBJS_bin_$(T)) $(l_LIBS) $(_lib_TARGETS); \
 $(call ccxx_make_bin,$(T))))

For each local library target x that does not exist, make -lx depend
on $(call libname,x). This prevents errors about -lx not existing
when a binary target is built explicitly from clean. We avoid
creating this dependency if the library already exists because
otherwise make will translate this into a circular dependency when
it replaces -lx with the actual library file in the rule.
$(foreach T,$(_TARGETS_static_lib),\
 $(eval -l$(T): $(if $(wildcard $(call libname,$(T))),,$(call libname,\
\$(T)))))
$(foreach T,$(_TARGETS_shared_lib),\
 $(eval -l$(T): $(if $(wildcard $(call ccxx_shlibname,$(T))),,$(call c\
\cxx_shlibname,$(T)))))

_all_obj := $(sort $(_lib_OBJS) $(_bin_OBJS))
The list of all libraries includes static versions of the shared
libraries as well since on some platforms (Windows), creating a
shared library also creates a static library of the same name.
_all_lib := $(sort \
 $(foreach T,$(TARGETS_lib),$(call libname,$(T))) \
 $(foreach T,$(_TARGETS_shared_lib),$(call ccxx_all_shlibnames,$(T))))
_all_bin := $(foreach T,$(TARGETS_bin),$(call binname,$(T)))

Check for and remove orphan targets
IGNORE_TARGETS ?=
_existing_obj := $(sort $(wildcard *.$(OBJ) *.$(LOBJ)))
_extra_obj := $(filter-out $(_all_obj) $(IGNORE_TARGETS),$(_existing_obj))
ifeq ($(words $(_extra_obj)),0)
 # No extra objects found; check for other extra targets. Check for
 # libraries and shared libraries, and if we can recognize executables
 # as such (they have some recognizable suffix), check for them as
 # well.
 _all_other := $(_all_lib)
 _existing_other := $(sort $(wildcard $(call libname,*) $(call shlibname\
\,*,,,)))
 ifneq ($(call binname,*),*)
 # If executables are recognizable as such
 _all_other += $(_all_bin)
 _existing_other += $(sort $(wildcard $(call binname,*)))
 endif
 _extra_other := $(filter-out $(_all_other) $(IGNORE_TARGETS),$(_existin\
\g_other))
 ifneq ($(words $(_extra_other)),0)
 _qtx_dummy := $(call QTC.TC,abuild,ccxx.mk found extra other,0)
 # For all binary and library targets to relink
 DUMMY := $(shell $(PRINT) 1>&2 Extra targets found: removing libraries\

The ccxx.mk File

315

\ and binaries)
 DUMMY := $(shell $(RM) $(_extra_other) $(_all_lib) $(_all_bin))
 endif
else
 # Extra object files found; remove all extra objects as well as any
 # library or binary targets which we want to force to be recreated.
 _qtx_dummy := $(call QTC.TC,abuild,ccxx.mk found extra objs,0)
 DUMMY := $(shell $(PRINT) 1>&2 Extra object files found: removing libra\
\ries and binaries)
 DUMMY := $(shell $(RM) $(_extra_obj) $(_all_lib) $(_all_bin))
endif

Create a debugging target that shows values of some critical
variables.
.PHONY: ccxx_debug
ccxx_debug::
 @: $(call QTC.TC,abuild,ccxx.mk ccxx_debug,0)
 @$(PRINT) INCLUDES = $(INCLUDES)
 @$(PRINT) LIBDIRS = $(LIBDIRS)
 @$(PRINT) LIBS = $(LIBS)

Include built-in support for certain code generators. These should
have been plugins, but they were added before plugins were
supported.
include $(abMK)/standard-code-generators.mk

316

Appendix J. The java.groovy and
groovy.groovy Files
Here we include a complete copy of rules/groovy/java.groovy and rules/groovy/groovy.groovy.

import org.abuild.groovy.Util

//
// NOTE: when modifying this file, you must keep java-help.txt up to
// date!
//

class JavaRules
{
 def abuild
 def ant
 def pathSep

 List<String> defaultCompileClassPath = []
 List<String> defaultManifestClassPath = []
 List<String> defaultPackageClassPath = []
 List<String> defaultWrapperClassPath = []

 JavaRules(abuild, ant)
 {
 this.abuild = abuild
 this.ant = ant
 this.pathSep = ant.project.properties['path.separator']
 }

 def getPathVariable(String var)
 {
 String result = abuild.resolveAsString("java.dir.${var}")
 if (! new File(result).isAbsolute())
 {
 result = new File(abuild.sourceDirectory, result)
 }
 // Wrap this in a file object and call absolutePath so
 // paths are formatted appropriately for the operating
 // system.
 new File(result).absolutePath
 }

 def getPathListVariable(String var)
 {
 abuild.resolveAsList("java.dir.${var}").collect {
 if (new File(it).isAbsolute())
 {
 new File(it).absolutePath
 }
 else

The java.groovy and
groovy.groovy Files

317

 {
 new File(abuild.sourceDirectory, it).absolutePath
 }
 }
 }

 def getArchiveAttributes()
 {
 [
 'distdir': getPathVariable('dist'),
 'classesdir': getPathVariable('classes'),
 'resourcesdirs': [getPathVariable('resources'),
 getPathVariable('generatedResources')],
 'extraresourcesdirs' : getPathListVariable('extraResources'),
 'metainfdirs' : [getPathVariable('metainf'),
 getPathVariable('generatedMetainf')],
 'extrametainfdirs' : getPathListVariable('extraMetainf'),
 'extramanifestkeys' : [:]
]
 }

 def initTarget()
 {
 // We have three classpath interface variables that we combine
 // in various ways to initialize our various classpath
 // variables here. See java_help.txt for details.

 defaultCompileClassPath.addAll(
 abuild.resolve('abuild.classpath') ?: [])
 defaultCompileClassPath.addAll(
 abuild.resolve('abuild.classpath.external') ?: [])

 defaultManifestClassPath.addAll(
 abuild.resolve('abuild.classpath.manifest') ?: [])

 defaultPackageClassPath.addAll(
 abuild.resolve('abuild.classpath') ?: [])

 defaultWrapperClassPath.addAll(defaultCompileClassPath)

 // Filter out jars built by this build item from the compile
 // and manifest classpaths.
 def dist = getPathVariable('dist')
 defaultCompileClassPath = defaultCompileClassPath.grep {
 new File(it).parent != dist
 }
 defaultManifestClassPath = defaultManifestClassPath.grep {
 new File(it).parent != dist
 }
 }

 def compile(Map attributes)
 {
 def srcdirs = attributes.remove('srcdirs')

The java.groovy and
groovy.groovy Files

318

 srcdirs.addAll(attributes.remove('extrasrcdirs'))

 srcdirs = srcdirs.grep { dir -> new File(dir).isDirectory() }
 if (! srcdirs)
 {
 return
 }

 // Remove attributes that are handled specially
 def compileClassPath = attributes.remove('classpath')
 def includes = attributes.remove('includes')
 def excludes = attributes.remove('excludes')
 def compilerargs = attributes.remove('compilerargs')

 def javacAttrs = attributes
 javacAttrs['classpath'] = compileClassPath.join(pathSep)
 ant.mkdir('dir' : attributes['destdir'])
 ant.javac(javacAttrs) {
 srcdirs.each { dir -> src('path' : dir) }
 compilerargs?.each { arg -> compilerarg('value' : arg) }
 includes?.each { include('name' : it) }
 excludes?.each { exclude('name' : it) }
 }
 }

 def compileTarget()
 {
 def defaultAttrs = [
 'srcdirs': ['src', 'generatedSrc'].collect {getPathVariable(it) },
 'extrasrcdirs' : getPathListVariable('extraSrc'),
 'destdir': getPathVariable('classes'),
 'classpath': this.defaultCompileClassPath,
 // Would be nice to turn path warnings back on
 'compilerargs': ['-Xlint', '-Xlint:-path'],
 'debug': 'true',
 'deprecation': 'on',
 'includeantruntime':
 abuild.resolveAsString('java.includeAntRuntime')
]
 abuild.runActions('java.compile', this.&compile, defaultAttrs)
 }

 def packageJarGeneral(Map attributes, String namekey)
 {
 // Remove keys that we will handle expicitly
 def jarname = attributes.remove(namekey)
 if (! jarname)
 {
 return
 }

 def distdir = attributes.remove('distdir')
 def classesdir = attributes.remove('classesdir')
 def resourcesdirs = attributes.remove('resourcesdirs')

The java.groovy and
groovy.groovy Files

319

 resourcesdirs.addAll(attributes.remove('extraresourcesdirs'))
 def metainfdirs = attributes.remove('metainfdirs')
 metainfdirs.addAll(attributes.remove('extrametainfdirs'))
 def mainclass = attributes.remove('mainclass')
 def manifestClassPath = attributes.remove('manifestclasspath')
 def extramanifestkeys = attributes.remove('extramanifestkeys')
 def filesToPackage = attributes.remove('filestopackage')

 // Take only last path element for each manifest class path
 manifestClassPath = manifestClassPath.collect { new File(it).name }

 // Filter out non-existent directories
 def filesets = [classesdir, resourcesdirs].flatten().grep {
 new File(it).isDirectory()
 }
 metainfdirs = metainfdirs.grep {
 new File(it).isDirectory()
 }

 ant.mkdir('dir' : distdir)
 def jarAttrs = attributes
 jarAttrs['destfile'] = "${distdir}/${jarname}"
 ant.jar(jarAttrs) {
 metainfdirs.each { metainf('dir': it) }
 filesets.each { fileset('dir': it) }
 filesToPackage?.each {
 File f = new File(it)
 if (! f.isAbsolute())
 {
 f = new File(abuild.sourceDirectory, it)
 }
 if (f.absolutePath !=
 new File("${distdir}/${jarname}").absolutePath)
 {
 fileset('file': f.absolutePath)
 }
 }
 manifest {
 if (manifestClassPath)
 {
 attribute('name' : 'Class-Path',
 'value' : manifestClassPath.join(' '))
 }
 if (mainclass)
 {
 attribute('name' : 'Main-Class', 'value' : mainclass)
 }
 extramanifestkeys.each() {
 key, value -> attribute('name' : key, 'value' : value)
 }
 }
 }
 }

The java.groovy and
groovy.groovy Files

320

 def packageJar(Map attributes)
 {
 packageJarGeneral(attributes, 'jarname')
 }

 def packageJarTarget()
 {
 def defaultAttrs =
 [
 'jarname': abuild.resolveAsString('java.jarName'),
 'mainclass' : abuild.resolveAsString('java.mainClass'),
 'manifestclasspath' : defaultManifestClassPath,
]
 archiveAttributes.each { k, v -> defaultAttrs[k] = v }

 abuild.runActions('java.packageJar', this.&packageJar, defaultAttrs)
 }

 def signJars(Map attributes)
 {
 def alias = attributes.remove('alias')
 def storepass = attributes.remove('storepass')

 if (! (alias && storepass))
 {
 return
 }

 def jarsToSign = attributes.remove('jarstosign')
 def signdir = new File(attributes.remove('signdir'))
 if (! (jarsToSign || signdir.isDirectory()))
 {
 return
 }

 ant.mkdir('dir': signdir)
 jarsToSign.each {
 def src = new File(it)
 if ((src.parent != signdir.absolutePath) &&
 (src.name =~ /(?i:\.jar)$/))
 {
 def dest = new File(signdir, src.name)
 ant.copy('file': src.absolutePath,
 'tofile': dest.absolutePath)
 }
 }

 def keystore = attributes.remove('keystore')
 def keypass = attributes.remove('keypass')
 if (keystore && (! new File(keystore).absolutePath))
 {
 keystore =
 new File(abuild.sourceDirectory + "/$keystore").absolutePath
 }

The java.groovy and
groovy.groovy Files

321

 def includes = attributes.remove('includes')
 def signjarAttrs = attributes
 signjarAttrs['alias'] = alias
 signjarAttrs['storepass'] = storepass
 if (keystore)
 {
 signjarAttrs['keystore'] = keystore
 }
 if (keypass)
 {
 signjarAttrs['keypass'] = keypass
 }

 ant.signjar(signjarAttrs) {
 fileset('dir': signdir.absolutePath, 'includes': includes)
 }
 }

 def signJarsTarget()
 {
 def defaultAttrs = [
 'includes': '*.jar',
 'signdir': getPathVariable('signedJars'),
 'jarstosign' : abuild.resolve('java.jarsToSign'),
 'alias': abuild.resolve('java.sign.alias'),
 'storepass': abuild.resolve('java.sign.storepass'),
 'keystore': abuild.resolve('java.sign.keystore'),
 'keypass': abuild.resolve('java.sign.keypass'),
 'lazy': true
]

 abuild.runActions('java.signJars', this.&signJars, defaultAttrs)
 }

 def packageHighLevelArchive(Map attributes)
 {
 packageJarGeneral(attributes, 'highlevelarchivename')
 }

 def packageHighLevelArchiveTarget()
 {
 def defaultAttrs = [
 'highlevelarchivename':
 abuild.resolveAsString('java.highLevelArchiveName'),
 'filestopackage' : defaultPackageClassPath,
]
 archiveAttributes.each { k, v -> defaultAttrs[k] = v }

 abuild.runActions('java.packageHighLevelArchive',
 this.&packageHighLevelArchive, defaultAttrs)
 }

 def packageWar(Map attributes)

The java.groovy and
groovy.groovy Files

322

 {
 // Remove keys that we will handle expicitly
 def warname = attributes.remove('warname')
 def webxml = attributes.remove('webxml')
 if (! (warname && webxml))
 {
 return
 }

 if (! new File(webxml).isAbsolute())
 {
 webxml = new File(abuild.sourceDirectory, webxml).absolutePath
 }

 def distdir = attributes.remove('distdir')
 def resourcesdirs = attributes.remove('resourcesdirs')
 resourcesdirs.addAll(attributes.remove('extraresourcesdirs'))
 resourcesdirs << attributes.remove('classesdir')
 def webdirs = attributes.remove('webdirs')
 webdirs.addAll(attributes.remove('extrawebdirs'))
 webdirs << attributes.remove('signedjars')
 def metainfdirs = attributes.remove('metainfdirs')
 metainfdirs.addAll(attributes.remove('extrametainfdirs'))
 def extramanifestkeys = attributes.remove('extramanifestkeys')
 def webinfdirs = attributes.remove('webinfdirs')
 webinfdirs.addAll(attributes.remove('extrawebinfdirs'))
 def libfiles = attributes.remove('libfiles')
 def filesToPackage = attributes.remove('filestopackage')

 // Filter out non-existent directories
 resourcesdirs = resourcesdirs.grep { new File(it).isDirectory() }
 webdirs = webdirs.grep { new File(it).isDirectory() }
 metainfdirs = metainfdirs.grep { new File(it).isDirectory() }
 webinfdirs = webinfdirs.grep { new File(it).isDirectory() }

 ant.mkdir('dir' : distdir)
 def warAttrs = attributes
 warAttrs['destfile'] = "${distdir}/${warname}"
 warAttrs['webxml'] = webxml
 ant.war(warAttrs) {
 webinfdirs.each { webinf('dir': it) }
 metainfdirs.each { metainf('dir': it) }
 webdirs.each { fileset('dir': it) }
 resourcesdirs.each { classes('dir': it) }
 libfiles.each {
 File f = new File(it)
 if (f.absolutePath !=
 new File("${distdir}/${warname}").absolutePath)
 {
 lib('file': f.absolutePath)
 }
 }
 filesToPackage?.each {
 File f = new File(it)

The java.groovy and
groovy.groovy Files

323

 if (! f.isAbsolute())
 {
 f = new File(abuild.sourceDirectory, it)
 }
 if (f.absolutePath !=
 new File("${distdir}/${warname}").absolutePath)
 {
 fileset('file': f.absolutePath)
 }
 }
 manifest {
 extramanifestkeys.each() {
 key, value -> attribute('name' : key, 'value' : value)
 }
 }
 }
 }

 def packageWarTarget()
 {
 def defaultAttrs = [
 'warname': abuild.resolveAsString('java.warName'),
 'webxml': abuild.resolveAsString('java.webxml'),
 'webdirs': [getPathVariable('webContent'),
 getPathVariable('generatedWebContent')],
 'extrawebdirs' : getPathListVariable('extraWebContent'),
 'webinfdirs' : [getPathVariable('webinf'),
 getPathVariable('generatedWebinf')],
 'extrawebinfdirs' : getPathListVariable('extraWebinf'),
 'signedjars' : getPathVariable('signedJars'),
 'libfiles' : abuild.resolveAsList('java.warLibJars')
]
 archiveAttributes.each { k, v -> defaultAttrs[k] = v }

 abuild.runActions('java.packageWar', this.&packageWar, defaultAttrs)
 }

 def packageEar(Map attributes)
 {
 // Remove keys that we will handle expicitly
 def earname = attributes.remove('earname')
 def appxml = attributes.remove('appxml')
 if (! (earname && appxml))
 {
 return
 }
 if (! new File(appxml).isAbsolute())
 {
 appxml = new File(abuild.sourceDirectory, appxml).absolutePath
 }

 def distdir = attributes.remove('distdir')
 def resourcesdirs = attributes.remove('resourcesdirs')
 resourcesdirs.addAll(attributes.remove('extraresourcesdirs'))

The java.groovy and
groovy.groovy Files

324

 def metainfdirs = attributes.remove('metainfdirs')
 metainfdirs.addAll(attributes.remove('extrametainfdirs'))
 def extramanifestkeys = attributes.remove('extramanifestkeys')
 def filesToPackage = attributes.remove('filestopackage')

 // Filter out non-existent directories
 resourcesdirs = resourcesdirs.grep { new File(it).isDirectory() }
 metainfdirs = metainfdirs.grep { new File(it).isDirectory() }

 ant.mkdir('dir' : distdir)
 def earAttrs = attributes
 earAttrs['destfile'] = "${distdir}/${earname}"
 earAttrs['appxml'] = appxml
 ant.ear(earAttrs) {
 metainfdirs.each { metainf('dir': it) }
 resourcesdirs.each { fileset('dir': it) }
 filesToPackage.each {
 File f = new File(it)
 if (! f.isAbsolute())
 {
 f = new File(abuild.sourceDirectory, it)
 }
 if (f.absolutePath !=
 new File("${distdir}/${earname}").absolutePath)
 {
 fileset('file': f.absolutePath)
 }
 }
 manifest {
 extramanifestkeys.each() {
 key, value -> attribute('name' : key, 'value' : value)
 }
 }
 }
 }

 def packageEarTarget()
 {
 def defaultAttrs = [
 'earname': abuild.resolveAsString('java.earName'),
 'appxml': abuild.resolveAsString('java.appxml'),
 'filestopackage' : defaultPackageClassPath,
]
 archiveAttributes.each { k, v -> defaultAttrs[k] = v }
 defaultAttrs.remove('classesdir')

 abuild.runActions('java.packageEar', this.&packageEar, defaultAttrs)
 }

 def javadoc(Map attributes)
 {
 def srcdirs = attributes.remove('srcdirs')
 srcdirs.addAll(attributes.remove('extrasrcdirs'))
 srcdirs = srcdirs.grep { dir -> new File(dir).isDirectory() }

The java.groovy and
groovy.groovy Files

325

 if (! srcdirs)
 {
 return
 }

 def javadocAttrs = attributes
 javadocAttrs['sourcepath'] = srcdirs.join(pathSep)
 javadocAttrs['classpath'] = attributes['classpath'].join(pathSep)
 ant.javadoc(javadocAttrs)
 }

 def javadocTarget()
 {
 def title = abuild.resolveAsString('java.javadocTitle')
 // case of Doctitle and Windowtitle are for consistency with
 // ant task
 def defaultAttrs = [
 'Doctitle': title,
 'Windowtitle': title,
 'srcdirs': ['src', 'generatedSrc'].collect {getPathVariable(it) },
 'classpath': this.defaultCompileClassPath,
 'extrasrcdirs': getPathListVariable('extraSrc'),
 'access': abuild.resolveAsString('java.doc.accessLevel',
 'protected'),
 'destdir': getPathVariable('generatedDoc')
]

 abuild.runActions('java.javadoc', this.&javadoc, defaultAttrs)
 }

 def wrapper(Map attributes)
 {
 def wrapperName = attributes['name']
 def mainClass = attributes['mainclass']
 def jarName = attributes['jarname']
 if (! (wrapperName && mainClass))
 {
 return
 }
 def wrapperDir = attributes['dir']
 def wrapperPath = new File("$wrapperDir/$wrapperName").absolutePath
 def distDir = attributes['distdir']
 def wrapperClassPath = attributes['classpath']
 if (jarName)
 {
 wrapperClassPath << new File("$distDir/$jarName").absolutePath
 }
 wrapperClassPath = wrapperClassPath.join(pathSep)

 // The wrapper script has different contents on Windows and
 // UNIX. This has the unfortunate side effect of making it
 // impossible to run wrapper scripts in an OS other than the
 // one on which they were generated. However, since wrapper
 // scripts contain paths to things that may themselves be

The java.groovy and
groovy.groovy Files

326

 // system dependent, this doesn't really add any new problems.
 // As such, wrapper script generation is done unconditionally,
 // so if you run abuild wrapper on two different systems,
 // they'll each leave behind their own versions of the wrapper
 // script.
 if (Util.inWindows)
 {
 ant.echo('file' : "${wrapperPath}.bat", """@echo off
java -classpath ${wrapperClassPath} ${mainClass} %1 %2 %3 %4 %5 %6 %7 %8 %9
""")
 // In case we're in Cygwin...
 ant.echo('file' : wrapperPath, '''#!/bin/sh
exec `dirname $0`/`basename $0`.bat ${1+"$@"}
''')
 }
 else
 {
 ant.echo('file' : wrapperPath,
 """#!/bin/sh
exec java -classpath ${wrapperClassPath} ${mainClass} \${1+\"\$@\"}
""")
 }
 ant.chmod('file' : wrapperPath, 'perm' : 'a+x')
 }

 def wrapperTarget()
 {
 def defaultAttrs = [
 'name': abuild.resolveAsString('java.wrapperName'),
 'mainclass': abuild.resolveAsString('java.mainClass'),
 'jarname': abuild.resolveAsString('java.jarName'),
 'dir': abuild.buildDirectory.absolutePath,
 'distdir': getPathVariable('dist'),
 'classpath': defaultWrapperClassPath
]

 abuild.runActions('java.wrapper', this.&wrapper, defaultAttrs)
 }

 def testJunit(Map attributes)
 {
 def testsuite = attributes.remove('testsuite')
 def batchIncludes = attributes.remove('batchincludes')
 def batchExcludes = attributes.remove('batchexcludes')
 if (! (testsuite || batchIncludes))
 {
 return
 }
 def distdir = attributes.remove('distdir')
 def classesdir = attributes.remove('classesdir')
 def junitdir = attributes.remove('junitdir')
 def reportdir = attributes.remove('reportdir')
 def testClassPath = attributes.remove('classpath')

The java.groovy and
groovy.groovy Files

327

 ant.mkdir('dir': junitdir)
 def junitAttrs = attributes
 // Make sure we run junitreport even if junit fails and
 // haltonfailure is set.
 try
 {
 ant.junit(junitAttrs) {
 classpath {
 testClassPath.each {
 pathelement('location': it)
 }
 fileset('dir': distdir, 'includes': '*.jar')
 }
 if (testsuite)
 {
 test('name': testsuite,
 'todir': junitdir) {
 formatter('type': 'xml')
 }
 }
 if (batchIncludes)
 {
 batchtest('todir': junitdir) {
 fileset('dir': classesdir) {
 include('name': batchIncludes)
 if (batchExcludes)
 {
 exclude('name': batchExcludes)
 }
 }
 formatter('type': 'xml')
 }
 }
 }
 }
 finally
 {
 ant.junitreport('todir': junitdir) {
 fileset('dir': junitdir, 'includes': 'TEST-*.xml')
 report('format': 'frames', 'todir': reportdir)
 }
 }
 }

 def testJunitTarget()
 {
 def defaultAttrs = [
 'testsuite': abuild.resolveAsString('java.junitTestsuite'),
 'batchincludes': abuild.resolveAsString('java.junitBatchIncludes'),
 'batchexcludes': abuild.resolveAsString('java.junitBatchExcludes'),
 'classpath': defaultWrapperClassPath,
 'classesdir': getPathVariable('classes'),
 'distdir': getPathVariable('dist'),
 'junitdir': getPathVariable('junit'),

The java.groovy and
groovy.groovy Files

328

 'reportdir': getPathVariable('junitHtml'),
 'printsummary': 'yes',
 'haltonfailure': 'yes',
 'fork': 'true'
]

 abuild.runActions('java.junit', this.&testJunit, defaultAttrs)
 }

}

def javaRules = new JavaRules(abuild, ant)

abuild.addTargetClosure('init', javaRules.&initTarget)
abuild.addTargetClosure('test-junit', javaRules.&testJunitTarget)
abuild.addTargetDependencies('all', ['package', 'wrapper'])
abuild.addTargetDependencies('package', ['package-ear'])
abuild.addTargetDependencies('generate', ['init'])
abuild.addTargetDependencies('doc', ['javadoc'])
abuild.addTargetDependencies('test-only', ['test-junit'])
abuild.configureTarget('compile', 'deps' : ['generate'],
 javaRules.&compileTarget)
abuild.configureTarget('package-jar', 'deps' : ['compile'],
 javaRules.&packageJarTarget)
abuild.configureTarget('sign-jars', 'deps' : ['package-jar'],
 javaRules.&signJarsTarget)
abuild.configureTarget('package-high-level-archive', 'deps' : ['sign-jars'],
 javaRules.&packageHighLevelArchiveTarget)
abuild.configureTarget('package-war', 'deps' : ['sign-jars'],
 javaRules.&packageWarTarget)
abuild.configureTarget('package-ear', 'deps' : ['package-high-level-archive',
 'package-war'],
 javaRules.&packageEarTarget)
abuild.configureTarget('javadoc', 'deps' : ['compile'],
 javaRules.&javadocTarget)
abuild.configureTarget('wrapper', 'deps' : ['package-jar'],
 javaRules.&wrapperTarget)

import org.abuild.groovy.Util

class GroovyRules
{
 def abuild
 def ant
 def pathSep

 List<String> defaultCompileClassPath = []

 GroovyRules(abuild, ant)
 {
 this.abuild = abuild
 this.ant = ant
 this.pathSep = ant.project.properties['path.separator']

The java.groovy and
groovy.groovy Files

329

 }

 def getPathVariable(String var, String prefix)
 {
 String result = abuild.resolveAsString("${prefix}.dir.${var}")
 if (! new File(result).isAbsolute())
 {
 result = new File(abuild.sourceDirectory, result)
 }
 new File(result).absolutePath
 }

 def initTarget()
 {
 // We have three classpath interface variables that we combine
 // in various ways to initialize our various classpath
 // variables here. See java_help.txt for details. For
 // groovy, we are concerned only with the compile classpath.
 // We rely on the java rules for everything else.

 defaultCompileClassPath.addAll(
 abuild.resolve('abuild.classpath') ?: [])
 defaultCompileClassPath.addAll(
 abuild.resolve('abuild.classpath.external') ?: [])

 // Filter out jars built by this build item from the compile
 // classpath.
 def dist = getPathVariable('dist', 'java')
 defaultCompileClassPath = defaultCompileClassPath.grep {
 dir -> new File(dir).parent != dist
 }
 }

 def compile(Map attributes)
 {
 attributes['srcdirs'] = attributes['srcdirs'].grep {
 dir -> new File(dir).isDirectory()
 }
 if (! attributes['srcdirs'])
 {
 return
 }

 // Remove attributes that are handled specially
 def compileClassPath = attributes.remove('classpath')
 def includes = attributes.remove('includes')
 def excludes = attributes.remove('excludes')
 def srcdirs = attributes.remove('srcdirs')

 def groovycArgs = attributes
 groovycArgs['classpath'] =
 getPathVariable('classes', 'java') + pathSep +
 compileClassPath.join(pathSep)
 ant.mkdir('dir' : attributes['destdir'])

The java.groovy and
groovy.groovy Files

330

 ant.groovyc(groovycArgs) {
 srcdirs.each { dir -> src('path' : dir) }
 includes?.each { include('name' : it) }
 excludes?.each { exclude('name' : it) }
 }
 }

 def compileTarget()
 {
 def defaultAttrs = [
 'srcdirs': ['src', 'generatedSrc'].collect {
 getPathVariable(it, 'groovy')
 },
 'destdir': getPathVariable('classes', 'java'),
 'classpath': this.defaultCompileClassPath,
]

 abuild.runActions('groovy.compile', this.&compile, defaultAttrs)
 }
}

ant.taskdef('name': 'groovyc',
 'classname': 'org.codehaus.groovy.ant.Groovyc')

def groovyRules = new GroovyRules(abuild, ant)

if (! abuild.resolve('abuild.rules').grep { it == 'java' })
{
 abuild.fail('use of groovy rules requires use of java rules')
}

abuild.addTargetClosure('init', groovyRules.&initTarget)
abuild.addTargetClosure('compile', groovyRules.&compileTarget)

331

Appendix K. The Deprecated XML-
based Ant Backend

Warning

This appendix briefly describes the deprecated xml-based ant backend, which was the only mechanism for
building Java code in abuild 1.0. To ease the transition to the newer Groovy-based framework, which still
uses ant through Groovy's AntBuilder object, the old xml-based ant framework has been left largely intact.
With one notable change, it works just as it did in abuild 1.0. New code should not use this framework. The
rest of this appendix is mostly excerpts from abuild 1.0's documentation with explicit examples removed. The
text may not be entirely coherent because of the omissions. Although much of the text is written as if this is
the supported way to build Java code (which it was when the text was originally written), in no way should
anything in this appendix be taken as a suggestion that this backend should be used for new code.

The one major difference is that abuild now invokes all Java builds from a single JVM. This JVM runs one
build per thread up to the number of threads specified by abuild's -j option. In abuild 1.0, abuild actually ran
an instance of the ant command, which it started with its current directory set to the output directory. Now,
abuild launches ant through its Java API. Although the basedir property is still set to the name of the output
file, certain poorly-behaved tasks that don't use that for local paths may find themselves resolving local paths
relative to abuild's start directory instead of the output directory. This seems like a small price to pay though
given that even the old ant framework runs many times faster using abuild 1.1's java build launcher as it
prevents creation of a new JVM for each build.

Warning

There are two different build files that trigger use of the deprecated xml-based ant framework: Abuild-
ant.properties for property-driven builds, and Abuild-ant.xml for build.xml-driven builds. The build.xml-
based approach was introduced as a means to allow for greater flexibility in experimenting with alternative
Java build approaches. However, as use of ant through XML files has been abandoned in abuild 1.1, it no
longer serves any purpose. The way it works is that, if your build file is Abuild-ant.xml, abuild launches ant
from the output directory using the source directory's Abuild-ant.xml as the build file. Other than having to
resolve paths relative to the output directory rather than the directory containing Abuild-ant.xml as well as
having access to the .ab-dynamic-ant.properties file, this was essentially just using ant to do your builds.
Nothing further will be said about this method in this appendix. The remainder of the appendix will focus
only on the property-based build method.

K.1. The Abuild-ant.properties File

The Abuild-ant.properties file is the build configuration file for Java build items. It serves the same function for Java
build items as Abuild.mk serves for platform-independent and C/C++ build items.

Below is a list of supported properties. You can also see this list by running abuild properties-help from any Java
build item.

abuild.application-xml
The name of the application.xml to put into an EAR file. This must be set (along with abuild.ear-name) for an
EAR file to be generated.

The Deprecated XML-
based Ant Backend

332

abuild.ear-name
The name of the EAR file, including the .ear suffix, to be generated. This must be set for an EAR file to be
generated. EAR files contain any archive files in the abuild.classpath property. They do not contain JAR files in
the abuild.classpath.external property.

abuild.hook-build-items
A comma-separated list of build items from which hooks should be loaded. For details about using hooks, see
Section K.3, “Ant Hooks”, page 334.

abuild.jar-name
The name of the JAR file, including the .jar or other archive suffix, to be created by this build item. This must
be set in order for a JAR file to be generated.

abuild.java-source-version
If specified, the value of this property will be used for the source attribute of the javac task. Otherwise, the value
will come from the abuild.java-target-version if set or from the Java environment used to run ant if not.

abuild.java-target-version
If specified, the value of this property will be used for the target attribute of the javac task. If abuild.java-source-
version is not set and this property is, then this property's value will also be used to set the source attribute of
the javac task.

abuild.junit.testsuite
This property contains the name of the class that implements this build item's junit test suite. It must be set in
order for the test target to attempt to run a junit test suite.

abuild.local-buildfile
The name of a local build file, specified relative to the build item's directory, that will be imported by ant. It
may contain additional properties that can't be specified in a property file, resource collections, or even additional
targets. If you are using this too often, please consider whether a build item hooks file should be used instead, or
whether there is some functionality that is missing from the core abuild ant framework code.

abuild.main-class
The name of a class, if any, that implements main. Setting this property causes the Main-Class attribute to be set
in the manifest file. It also influences generation of the wrapper script if abuild.wrapper-name is set.

abuild.use-ant-runtime
If set, ant runtime libraries will be included in the compilation classpath. This can be useful for compiling custom
ant tasks.

abuild.use-local-hooks
If this and abuild.local-buildfile are both set, abuild will attempt to run hooks from the local build file as well
as from any hook build items.

abuild.war-name
The name of the WAR file, including the .war suffix, to be generated. This must be set for a WAR file to be
generated. WAR files contain any JAR files in the abuild.classpath property. They do not contain JAR files in
the abuild.classpath.external property.

abuild.war-type
The type of the WAR file, which must be either client or server. This property determines where items in
abuild.classpath are copied. For client WAR files, classpath JAR files are copied into the root of the WAR file
where the are accessible to clients' browsers. For server WAR files, they are copied into the WEB-INF/lib direc-
tory of the WAR file.

The Deprecated XML-
based Ant Backend

333

abuild.web-xml
The name of the web.xml to put into a WAR file. This must be set (along with abuild.war-name) for a WAR file
to be generated.

abuild.wrapper-name
If this property and abuild.main-class are both set, a script by this name will be generated that will invoke the
Java runtime environment to invoke this main. The script will include the classpath as determined by abuild. On
Windows, the script is usable to invoke the application from a Cygwin environment, and a stand-alone batch file
(that does not reference the script or require Cygwin) is generated as well.

Note that at most of one abuild.jar-name, abuild.war-name, or abuild.ear-name may be set for any given build item.

K.2. Directory Structure For Java Builds
Abuild's ant code assumes a particular directory structure for Java-based build items. The following table describes
the directories abuild looks for and what they mean. All paths are relative to the build item directory. Note that abuild-
java is the abuild output directory for Java builds. All directories under abuild-java are created automatically. All other
directories are optional: abuild will use them if they exist but will not complain if they are missing. Note that the clean
target removes the entire abuild output directory, which includes all the unused empty directories.

src/java
This directory contains java source code. Any files it contains will be compiled into class files and included in
the JAR or WAR file.

src/resources
Any files contained here will be copied to the JAR file named in the abuild.jar-name property or the EAR file
named in the abuild.ear-name property. Standard ant exclusions (for CM directories, editor backup files, etc.) are
in effect. Files will be placed under the root of the JAR or EAR in the same relative location as they are to src/
resources in the source tree.

src/web
Any files contained here will be copied to the WAR file named in the abuild.war-name property. Standard ant
exclusions (for CM directories, editor backup files, etc.) are in effect. Files will be placed under the root of the
WAR in the same relative location as they are to src/web in the source tree.

src/conf
Any files contained here will be added to the META-INF directory in the JAR or EAR file named in the abuild.jar-
name property or abuild.ear-name property or the WEB-INF directory in the WAR file named in the abuild.war-
name property.

qtest
This directory contains any qtest test suites. It must exist in order for the test target to attempt to run any qtest-
based test suites.

abuild-java/src/java
This directory contains any automatically generated java code. It is created automatically by abuild's ant rules and
may be populated by a generate hook from a local build file or build item hook file.

abuild-java/src/resources
This directory is created automatically by abuild's ant rules. It should be populated with any automatically gener-
ated files that are to be added to the JAR.

abuild-java/classpath
This directory is created automatically if an EAR or WAR file is being generated. If an EAR file is generated, it
is populated automatically with all files in the abuild.classpath property. If a WAR file is being generated, it is

The Deprecated XML-
based Ant Backend

334

populated with the jar-file versions of all the files in the abuild.classpath property. No action is required with this
directory, but if necessary, a build item may create a pre-package hook to modify or rearrange the contents of
that directory. This can be useful for certain EAR and WAR file construction cases. This mechanism may change
in the future.

abuild-java/classes
This directory contains class files that result from compiling files in both src/java and abuild-java/src/java.

abuild-java/dist
This directory is where abuild targets place files that are intended to be used outside of this build item. Among
other things, generated archive files are placed into this directory.

abuild-java/junit
This directory contains the output of junit tests.

abuild-java/junit/html
This directory contains the HTML summary of junit test output. Loading index.html from this directory into a
browser will allow you to view the test results.

abuild-java/empty
This is an empty directory used to substitute in abuild's ant code for optional directories that don't exist. You
should never put any files here. If you do, they will show up in generated archives in mysterious places. 1

Most of these directory names are all made available to ant target authors through properties.

K.3. Ant Hooks

In order to make it possible for users to add additional steps to the build process, abuild's ant code makes extensive
use of hooks.

Since hooks are called in separate projects from the main build, it is not useful to set properties from hook targets and
expect them to be available to later targets not invoked directly by the hook.

We define several hooks whose names start with -pre- or -post-. These hooks are run before and after the corresponding
target, and they are run even when the target itself is not being run. For example, the -post-package hook may be
run even if the package target is not run. This makes it possible to implement packaging or compilation strategies,
for example, that would be beyond abuild's ant code's ordinary purview. An example may be the implementation of
a wrapper post-package hook that can create a wrapper around things in an item's classpath even if that item itself
doesn't generate any new packages.

The following hooks are defined:

• init: called from the init target after any internal initialization has been completed. Use this to perform any additional
initialization.

• generate: called from the generate target, which is a dependency of the compile target. Use this hook to automat-
ically generate code to be compiled as part of the calling build item.

• pre-compile: called right before compilation. Use this hook to perform any compilation tasks that should precede
invocation of the Java compiler but follow automatic generation of any source files.

• post-compile: called right after compilation. Use this hook to perform any operations that should follow invocation
of the Java compiler and should be performed whether or not packaging is being done.

1 If you really want to know why we do it this way, read the comments in ant/abuild.xml in your abuild distribution.

The Deprecated XML-
based Ant Backend

335

• pre-package: called right before packaging. Use this hook to perform any operations that should be performed
before packaging is performed but after all compilation steps have been completed.

• post-package: called right after packaging. Use this hook to perform any operations that must follow packaging.

• pre-test: called before any test suites are executed. Use this to perform any unconditional setup required for auto-
mated testing.

• test: called after any internally supported test suites are run but after pre-test and before post-test. Use this hook to
provide support for additional automated test frameworks beyond those supported directly by abuild.

• post-test: called after any internally supported or externally provided test suites have been run.

• deploy: called from the deploy target.

• doc: called from the doc target.

• other: called from the other target. This hook is provided as a mechanism for allowing build-item-specific or local
targets to be defined that don't fit into the build in any other way. The expected mode of operation is that your -
other target would depend upon various other targets that would be invoked conditionally upon the value of some
user-provided property.

• properties-help: called from the properties-help target. Use this hook to provide help to your users about any
properties that may need to set to make use of the services provided by your hooks.

Any file that provides hooks must create an ant-hooks.xml file. For each hook that it wants to provide, it should create
a target called -hook where hook is replaced by the hook name above. For example, a hook file that provides a
generate hook would define a target called -generate. 2

K.4. JAR-like Archives
Abuild knows how to create JAR files, WAR files, and EAR files. The names of the archives that abuild creates do
not have to end with the suffix corresponding to the type. In particular, abuild is able to create JAR files that are not
called *.jar as is necessary in some instances. When it does, it will also create a copy of that file whose name does end
in .jar for compilation purposes as some versions of javac ignore classpath elements that are not either directories or
files whose names end with .zip or .jar, a behavior that is consistent with the documentation. 3

K.5. WAR Files
The structure of WAR files is slightly different from the structure of ordinary JAR files. In particular, when constructing
a WAR file, the src/resources directory is ignored and the src/web directory is used instead. Anything in src/web is
added to the WAR file at its root, just as with src/resources for a JAR file. Other than the name, there is no difference
between how these directories are used. Additionally, the src/conf directory is used to populate the WEB-INF directory
in the WAR rather than the META-INF. At present, there is no way to add files to META-INF other than manually
creating a META-INF directory under src/web. (The MANIFEST.MF file is created automatically by the jar task.)
Another difference is that compiled classes go in WEB-INF/classes instead of at the root as with a normal JAR file.

If the abuild.war-type property in Abuild-ant.properties has the value server, we copy all JAR files in the
abuild.classpath variable into the WEB-INF/lib directory. If abuild.war-type has the value client, they are copied into
the root of the WAR file. Before copying the JAR files from the classpath into the WAR file, abuild places them in

2 We use target names that start with a hyphen (“-”) because ant considers these to be private targets. This prevents users from invoking them
explicitly from the command line but still allows them to be invoked as dependencies of other targets.
3 This behavior was based on a misunderstanding of how these archives might be used. This behavior is not present in the new Groovy-based
framework.

The Deprecated XML-
based Ant Backend

336

the abuild-java/classpath directory. If you need to create a WAR file that includes files from abuild.classpath both at
the root and in the WEB-INF/lib directory, create a client WAR file and use a pre-package hook to move some of the
files from classpath into src/conf/lib (remember that both of these paths are relative to the output directory, which is
directory from which ant is run) so that they will end up in WEB-INF/lib.

K.6. EAR Files
The abuild.application-xml property has to be set in Abuild-ant.properties in addition to the abuild.ear-name property
in order for an EAR to be created.

Suppose you wanted to avoid inclusion of just the jar-example.jar file from the EAR file. You can do this by creating a
local pre-package hook that removes it from the classpath directory. This same mechanism can be used to create hybrid
client/server WAR files. The main problem with this approach is that it requires you to know the name of the archives
you want to move or remove, though this is not as bad as knowing their locations. A comparable alternative would
be to define custom interface variables in your dependencies to name the actual archives. These interface variables
would be available as ant properties from your local build file.

As with a JAR file, anything in the src/conf directory will appear under src/META-INF, and anything in src/resources
will appear in the EAR file relative to its location in src/resources.

337

Appendix L. List of Examples
The following sections within this document describe examples from doc/example. Many of the files from the example
directory are included in the document, but not all of them are. For the maximum benefit, you are encouraged to make
a copy of the doc/example directory so that you can follow along and make modifications.

Section 3.4, “Building a C++ Library”, page 12
Section 3.5, “Building a C++ Program”, page 13
Section 3.6, “Building a Java Library”, page 15
Section 3.7, “Building a Java Program”, page 16
Section 6.4, “Simple Build Tree Example”, page 30
Section 7.3, “Tree Dependency Example”, page 34
Section 9.7.1, “Common Code Area”, page 45
Section 9.7.2, “Tree Dependency Example: Project Code Area”, page 49
Section 9.7.3, “Trait Example”, page 50
Section 9.7.4, “Building Reverse Dependencies”, page 54
Section 9.7.5, “Derived Project Example”, page 54
Section 11.4, “Task Branch Example”, page 62
Section 11.5, “Deleted Build Item”, page 65
Section 18.3, “Autoconf Example”, page 99
Section 21.2, “Shared Library Example”, page 124
Section 22.2, “Code Generator Example for Make”, page 130
Section 22.3, “Code Generator Example for Groovy”, page 132
Section 22.4, “Multiple Wrapper Scripts”, page 140
Section 22.5, “Dependency on a Make Variable”, page 142
Section 22.6.1, “Caching Generated Files Example”, page 146
Section 23.3, “Private Interface Example”, page 152
Section 24.5, “Cross-Platform Dependency Example”, page 161
Section 25.2, “Mixed Classification Example”, page 168
Section 26.1, “Whole Library Example”, page 176
Section 27.1, “Opaque Wrapper Example”, page 179
Section 28.2, “Optional Dependencies Example”, page 181
Section 29.5, “Plugin Examples”, page 190
Section 29.5.1, “Plugins with Rules and Interfaces”, page 190
Section 29.5.2, “Adding Backend Code”, page 192
Section 29.5.3, “Platforms and Platform Type Plugins”, page 194
Section 29.5.4, “Plugins and Tree Dependencies”, page 198
Section 29.5.5, “Native Compiler Plugins”, page 198
Section 29.5.6, “Checking Project-Specific Rules”, page 201

338

Index
A
Abuild-ant.properties, 331
abuild.application-xml, 331
Abuild.backing, 82
abuild.classpath, 93
abuild.classpath.external, 93
abuild.classpath.manifest, 93
Abuild.conf, 20, 79
abuild.ear-name, 331
Abuild.groovy, 20
abuild.hook-build-items, 331
abuild.jar-name, 331
abuild.java-source-version, 331
abuild.java-target-version, 331
abuild.junit.testsuite, 331
abuild.local-buildfile, 331
abuild.main-class, 331
Abuild.mk, 20, 95
abuild.use-ant-runtime, 331
abuild.use-local-hooks, 331
abuild.war-name, 331
abuild.war-type, 331
abuild.web-xml, 331
abuild.wrapper-name, 331
ABUILD_ITEM_NAME, 91
ABUILD_OUTPUT_DIR, 91
ABUILD_PLATFORM, 91, 91
ABUILD_PLATFORM_COMPILER, 91
ABUILD_PLATFORM_CPU, 91
ABUILD_PLATFORM_OPTION, 91
ABUILD_PLATFORM_OS, 91
ABUILD_PLATFORM_TOOLSET, 91
ABUILD_PLATFORM_TYPE, 91
ABUILD_STDOUT_IS_TTY, 91
ABUILD_TARGET_TYPE, 91
ABUILD_THIS, 91
ABUILD_TREE_NAME, 91
ant-hooks.xml, 334
attributes, 79
Autoconf, 98

B
backend, 4
backing area, 59
backing-areas, 82
build

distributed, 4
parallel, 4

build file, 20
build forest, 11, 21

build item, 11, 20
current, 11
interface-only, 22
pass-through, 22
root, 21
scope, 28
unnamed, 22

build sets, 39
build tree, 11, 21

local, 33
build-also, 79

C
C code, 95
C++ code, 95
ccxx, 95
CCXX_TOOLCHAIN, 25
child-dirs, 79
clean, 38
Cygwin, 8

D
deleted-items, 82
deleted-trees, 82
dependencies

reverse, 42
dependency, 27

circular, 27
cross-platform, 158
direct, 27
indirect, 27
one-way gates, 166
platform compatibility, 157
transitive, 27

deps, 79
description, 79
DFLAGS, 96
distributed build, 4

I
INCLUDES, 91
interface, 83
interface file, 20
interface-only build item, 22

L
LIBDIRS, 91
LIBS, 91
local build tree, 33

M
mingw, 269

Index

339

N
name, 79
no-op, 38

O
OFLAGS, 96
output directories, 26
output modes, 119

P
parallel build, 4
pass-through build item, 22

dependencies, 159
platform, 24
platform selectors, 155
platform type, 24
platform-types, 79
platforms

compatibility for dependency, 157
plugin, 185

global, 186
plugin.groovy, 185
plugin.interface, 185
plugin.mk, 185
preplugin.groovy, 185
preplugin.mk, 185
private interfaces, 152

R
reverse dependencies, 42
root build item, 21
rules

build item, 129

S
scope, 28

ancestor, 28
descendant, 28

special targets, 38
supported-flags, 79
supported-traits, 79
SYSTEM_INCLUDES, 91

T
target , 11
target type, 24
top-level Abuild.conf, 33
traits, 42, 79
tree dependency, 33
tree-deps, 79
tree-name, 79

U
unnamed build item, 22

V
visible-to, 79

W
WFLAGS, 96
whole archive, 176
whole library, 176
Windows, 8

X
XCFLAGS, 91, 96
XCPPFLAGS, 91, 96
XCXXFLAGS, 91, 96
XLINKFLAGS, 91, 96

